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Abstract 

Tissue engineering aims to regenerate damaged and deceased tissue by combining cells with 

scaffold made from an appropriate biomaterial and providing a conducive environment to 

guide cell growth and the formation or regeneration of new tissue or organ. While collagen, 

an important material of the extracellular matrix (ECM), is a natural choice as a scaffold 

biomaterial, the conducive environment can only be created by having the ability to control 

the geometry, organization, structural and mechanical properties of the scaffold. Moreover, 

degradability and degradation rate control of the scaffold has to be taken into consideration 

too. In this work, we aim at developing a scaffold that possess the geometry, organization, 

structural and mechanical properties of the ECM, that is also degradable with degradation 

rate control. We accomplish this through fabrication of scaffolds composed of collagen fibers 

with diameters of ~ 50 to 500 nm using electrospinning. These fibers can be organized and 

provide structural and mechanical support for the cells populating it. The versatile 

electrospinning setup not only allows mimicking the define architecture of the native ECM 

environment containing collagen fibers but, in the core-shell or porous structure, can also 

enable bioactive molecule encapsulation and their controlled release into the cell culture 

environment. Post fabrication processing for fiber stability via chemical or photochemical 

crosslinking as well as ion implantation resulted in fibers with controlled degradation rate 

and enhanced mechanical properties. Chemical structure characterization demonstrated close 

resemblance of fiber surface and native collagen. Favorable cell adhesion and proliferation 

demonstrated good cell compatibility using the human fetal lung (IMR-90) cells.  By 

implementing the strategy developed in this thesis to construct scaffolds using electrospun 

collagen fiber that possess appropriate organization and properties to mimic the natural 

environment, scaffolds can be custom designed for specific tissue engineering applications 

with potentially improved outcome.  

Keywords 

Electrospinning, collagen, crosslinking, nanomechanics, cell compatibility, nanofiber, fiber 

organization  
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1 Introduction  

The goal of tissue engineering is to assemble functional constructs to restore, maintain or 

improve damaged tissues [1]. Among the many requirements that are known for the 

process, scaffold is one of the critical components. Knowing that extracellular matrix 

(ECM) is the major component of the microenvironment of the cell and takes part in most 

cellular process and cell behaviors, it is desirable to create constructs that can replicate 

the structural, chemical, physical and mechanical aspects of the ECM for tissue repair 

[1]–[3]. Collagen, the most abundant protein which serves as the structural and 

mechanical support for the cells, is the optimal biomaterial to create a scaffold that mimic 

the native ECM [4]–[6].   

As collagen is often presented as an organized 3D nanofibrous structure with fiber 

diameter between 50 to 500nm in many different tissues, electrospinning has been widely 

used to fabricate nanosized collagen fibers [7]–[10]. The versatility of the electrospinning 

process and setup allows collagen fibers with controlled size, structure, morphology and 

organization to be obtained [11]–[16].  

The objective of the current research is to use electrospinning to fabricate collagen fibers, 

and to use them as building blocks to create a tissue regeneration environment that 

resembles the native ECM. As electrospun collagen fibers are not stable in aqueous 

solutions, they have to be stabilized. Chemical, photochemical and physical methods 

have been suggested for introducing exogenous crosslinks into the molecular structure of 

collagen-based materials to control their degradation rate and enhance their mechanical 

stabilities. The effects of different stabilization methods on fiber structure, morphology, 

and properties will be investigated and compared.  

This thesis aims at developing a stabilized, cell compatible, electrospun collagen fibrous 

scaffold that replicate the structural, chemical, physical and mechanical aspects of the 

natural ECM for tissue engineering applications. The developed nanofibrous structure 

mimics the microanatomic and mechanical properties, and provide mechanical support 

for cell growth. When placed in an appropriate biochemical environment such as cell 



www.manaraa.com

2 

 

culture media, such a system will provide signals to guide cell migration, proliferation 

and differentiation.  

There are five main objectives of this work: 

1) To fabricate 3D electrospun collagen fibrous scaffolds, and to optimize the 

processing parameters to obtain fibers with desirable and controllable fiber 

morphology, structure and diameter that mimics the microanatomic structure of 

the native tissue 

2) To use coaxial electrospinning to demonstrate the possibility of incorporation of 

bioactive molecules (BM) for drug delivery applications.   

3) To stabilize the scaffolds in aqueous environment using chemical, photochemical 

and physical methods while preserving the fibrous morphology 

4) To characterize the effect of this stabilization in terms of aqueous stability, 

mechanical properties and chemical properties of the fibers 

5) To evaluate the in-vitro cell compatibility of the stabilized electrospun collagen 

scaffold for tissue regeneration applications 

This thesis is organized in the following way.  Chapter 2 is a literature review which 

provides background on the major components of this thesis: the effect of the ECM on 

cellular behavior, tissue engineering principles, electrospinning, collagen as a 

biomaterial, collagen stabilization, nano mechanical testing, and cell compatibility of 

electrospun collagen fibers. Chapter 3 describes the materials and methods used in this 

thesis for scaffold fabrication, modification, and characterization. In Chapter 4, results of 

the work performed to address the objectives of this thesis are presented. These include: 

optimizing the parameters of the electrospinning process for fiber fabrication, 

emphasizing environmental effects on fiber morphology and diameter; the effect of 

electrospinning setup variation on fiber organization relative to native collagen fiber 

arrangement;   the effect of crosslinking methods on fiber stabilization; the effect of 

stabilization on fiber diameter and mechanical properties;  characterization of  ion beam 

modified fibers using X-ray Photoelectron Spectroscopy (XPS). Finally, the in-vitro 

response of fetal lung fibroblast (IMR90) cells to the stabilized collagen fiber scaffold 
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will be presented in terms of the biological parameters including cell attachment and 

morphology. A comparison of the effect of fiber orientation cell behavior will also be 

included. Chapter 5 is a discussion of the results presented in Chapter 4, and their 

implications and relevance in tissue regeneration applications. Chapter 6, summarizes the 

work done, identifies the significance of the results, presents the conclusion. The final 

chapter, Chapter 7, suggests the future work which needs to be carried out.  
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2 Background and Literature Review 

2.1 Extracellular matrix structure and function  

In the human body, the natural environment of cells is composed of a collection of 

macromolecules secreted by support cells [3], [17], [18]. The non-cellular portion of 

tissues is termed the extracellular matrix (ECM) and serves to mechanically support cells 

in a three dimensional space while providing biochemical signals for cellular activity 

regulation [19]. The major components of the ECM include proteins, proteoglycans and 

glycosaminoglycans (GAGs) [20]. The ECM makes up a large majority of tissue volume, 

and also provides tissue with the unique geometric shape consisting primarily of protein 

fibers with diameters between 30 and 500 nm [21]. All the protein components are 

subject to degradation and modifications, and different components in the ECM are 

constantly being degraded, synthesized, secreted, organized, and modified by the cellular 

components [22]. Historically, the function of native ECM was only believed to be as a 

structural framework for tissues [23]. However, it is now understood that the ECM, 

through interactions with receptors on the cell surface, play an essential role in cellular 

activity and wound healing [24]. Cell-ECM interaction is responsible for pattern 

formation, morphogenesis, and phenotype acquisition and maintenance [22]. Wound 

healing, inflammation, formation of granulation tissues, and remodeling are all mediated 

by cell-ECM interaction during clot formation [22]. Cell adhesion, migration, growth, 

differentiation and apoptosis are all modulated by the transmission of signals between 

cell nucleus and the ECM. Growth factors and signaling molecules are proteins presented 

within the ECM, and ECM environment protects these proteins from premature 

degradation [22], [25].  

The ECM has the ability to communicate with cells by sending signals across the cell 

membrane to soluble molecules in the cytoplasm and through direct connections with the 

cytoskeleton into the cell nucleus [22]. Thus ECM has the ability to alter cellular function 

while cells repair, remodel and regenerate the ECM at the same time. Due to this cell-

ECM dynamic reciprocity, the cellular response to the ECM often results in changes to 

the state of the ECM. Thus, creating an ECM analogue that can replicate these 

physiological cell-ECM interactions is extremely important, but challenging. It was 
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suggested using natural polymers which constitute the native ECM may possess the 

properties required by cells for proper cellular responses [22].  

2.2 Cell – substrate interaction  

Cells receive chemical and physical signals from neighboring cells, the surrounding fluid 

and the extracellular matrix (ECM) [26]. Cells integrate these various stimuli and 

interpret them to generate appropriate cellular responses [26]–[30]. During directed 

migration, cells are guided by a combination of mechanical and chemical cues presented 

by neighboring cells and the surrounding extracellular matrix. One important class of 

signals that guide cell migration is topographic cues. Degree of tension [18], [31], [32], 

topography [26], [33], [34] and stiffness [17], [35], [36] of the substrate are important in 

cell morphology, signaling and proliferation. In particular, contact guidance in 3D is the 

phenomena by which the matrix provides directional cues to the cells and directs the 

motility response via anisotropy in the microenvironment [28]. 

Although the ECM in the human body is complex and tissue specific, its major 

components are polysaccharide chains and fibrous proteins, which have both structural 

and adhesive functions [37]. Collagen with diameter approximately 50-500nm is the 

major protein present in the ECM. It provides structural support to tissues and regulate 

cellular functions [3]. The micrometer scale architecture of these fibrous networks 

constrains spatially where cells can form adhesions and imparts complex mechanical 

characteristics to the ECM. 

Previous works on collagen gels indicate that contact guidance promotes cell migration 

along the axis of collagen alignment [27], [28]. Work on fibroblasts and mammary 

epithelial cells shows that contact guidance cues arising from collagen alignment promote 

3D cell migration along the axis of collagen alignment [28]. Londono et al. demonstrated 

that individual cells are contact guided by grooves [33], while Teixeira et al. 

demonstrated contact guidance of epithelial cells by well-defined micro- and 

nanostructured grooves [26].   
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Cells reside in or on a complex 3D ECM containing networks of fibers with diameters on 

the order of nanometers [38], [39]. These fiber networks vary in density and organization 

depending on the tissues [40]–[43]. It is desirable to examine the role of contact guidance 

in promoting 3D cell migration in both random and aligned fibrous scaffolds.  

2.3 Tissue Engineering  

Tissue engineering aims to develop functional constructs resembling the structure and 

function of native tissues to improve or replace damaged ones and to serve as an 

alternative to organ transplantation [44], [45]. In tissue engineering, cells are often seeded 

onto artificial structures capable of supporting 3D tissue formation. An optimal scaffold 

for tissue engineering applications should meet some basic requirements, such as 

biocompatibility, biodegradability, sterilizability, physical and chemical properties that 

correspond to those of native tissues [3]. It is desirable to have the scaffold mimic the 

mechanical and functional properties of the extracellular matrix (ECM) of the tissues to 

be generated. As the scaffold should possess the ability to support cell attachment as well 

as to facilitate nutrient transport throughout the assembly, it is essential to have a high 

surface area and an inter-connected 3D porous structure. Proper geometry, pore size, and 

scaffold architecture are all important factors that can significantly affect cellular 

behavior such as cell attachment, proliferation and differentiation [46].   

It is well established that the ECM provides signals that control many cell activities such 

as differentiation, adhesion, migration, proliferation and apoptosis [19], [47]. These 

signals are orchestrated by the three-dimensional organization of the matrix, which 

provides both specific interactions and also structural clues. The creation of ECM-

mimicking scaffolds that facilitate the generation of high levels of cellular complexity is 

the ultimate objective of tissue engineering. 

An ideal tissue engineering scaffold should mimic the form and functionality of the 

native ECM to serve as a “synthetic ECM” [16], [22], [34]. It should replicate the 

structural, chemical, physical and mechanical aspects of the native ECM. Thus, a 

successful tissue engineering scaffold should:  



www.manaraa.com

7 

 

1) Have an appropriate porosity that allows cell migration and penetration, 

2) Have a high surface area to volume ratio and proper surface chemistry to promote 

cell adhesion, growth, migration and differentiation, 

3) Be constructed from materials that are biocompatible and degradable with a 

degradation rate that closely resembles the rate of native tissue regeneration to 

promote proper tissue growth,   

4) Be mechanically strong, to provide support and stimulate cell growth. 

Because the dimensions of the building blocks of a tissue engineered scaffold should be 

on the same scale as those of natural ECM, 3D nanofibrous structures have great 

potential for producing scaffolds that resemble the fibrillary features of ECM.  

Many studies have reported the fabrication of nanofibers using various techniques, such 

as electrospinning, self-assembly, phase separation, bacterial cellulose, templating, 

drawing, extraction, and vapor phase polymerization [3], [48]. Among these methods, 

electrospinning is a simple, inexpensive and versatile approach with the ability to 

generate nanosized fibers to form fibrous structure with random and organized 

arrangements, and has gained widespread interest as a potential scaffolding technique for 

tissue engineering applications [44], [49], [50].  

2.4 Cell compatibility of tissue engineering scaffold   

Fabricated scaffolds may interact with the host tissue cells, and these scaffolds should 

actively facilitate and regulate cell activities [24]. A scaffold should support cell 

attachment, growth and differentiation during both in vitro culture and in vivo 

implantation [2]. The biomaterials used to fabricate the scaffolds should be biocompatible 

with the host tissue. It should possess the correct structure, geometry, and mechanical 

properties and be compatible with the cell type that is present in the tissue that is being 

regenerated. The biomaterial used in the scaffold should cause minimal immune rejection 

and may include biological cues such as bioactive molecules and cell-adhesive ligands to 

enhance cell attachment. Growth-stimulating signals such as growth factors can also be 

encapsulated in the scaffold to speed up regeneration [3], [34], [45], [47], [49], [51], [52]. 

In such cases, the engineered scaffold may also serve as a delivery vehicle or reservoir 
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for the bioactive molecules. The scaffold surface provides the anchoring site for cell 

attachment, which is the initial stage for tissue regeneration, thus the surface properties of 

the scaffold should allow good cell adhesion [2], [45], [53]. Hence, surface modification 

of the biomaterials has become increasingly popular for enhancing cell adhesion [54]–

[60].  

2.5 Electrospinning  

2.5.1 Setup and operating principles  

Electrospinning is a notable fiber fabrication technique used to produce non-woven 

fibrous materials with fiber diameters in the order of a few nanometers to > 1 µm [61]. A 

typical electrospinning setup consists of a conductive capillary which the solution to be 

electrospun is forced through, a high voltage source with positive or negative polarity, 

which applies electric charges into the liquid, and a ground collector [62]–[64]. Polymers 

are dissolved in a solvent at a concentration high enough for polymer chain entanglement 

to occur [49], [64]–[68]. Too low a concentration prevent fibers to form, while higher 

concentration results in a viscosity that is too high for the solution to be pulled out of the 

capillary. During the electrospinning process, a polymer solution is first forced through 

the spinneret and forms a droplet at the tip of the spinneret. The droplet is held in place 

by its surface tension. As an electric field is applied to the droplet, the droplet if first 

deformed into a conical shape termed a Taylor cone by the electrostatic force, which is in 

equilibrium with surface tension [69], [70]. Further increases in the applied voltage 

results in the electrostatic force overcoming the surface tension, and a jet of solution is 

ejected from the tip of the Taylor cone. The electric force stretches the polymer jet as it is 

drawn from the tip of the Taylor cone and attracted to the ground electrode. This 

stretching and drawing reduces the jet diameter. As the jet travels in the electric field, the 

solvent evaporates and the dry nanometer to micrometer-scale fibers are collected as a 

randomly oriented web on the collector [61], [71], [72]. The fibers produced via 

electrospinning have a nonwoven structure with interconnected pores and a large surface 

to volume ratio. These features give such fibrous scaffolds many biomedical and 

industrial applications such as filtration devices, membranes, protective clothing, and 

tissue engineering scaffolds [64], [73], [74]. Various materials and process parameters 
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can affect the final fiber properties and architecture [2], [3], [47], [61], [73], [75], [76]. 

The flexibility in tailoring scaffold properties such as fiber diameter, scaffold size, 

porosity, and fiber morphology, offers the possibility to design electrospun scaffolds that 

can meet the demands of numerous practical applications. In particular, the 

morphological resemblance of electrospun nanofibers to native ECM is the major factor 

driving the use of electrospun scaffolds for tissue engineering [3]. Moreover, the high 

surface area vs. volume ratio and interconnected pores of the scaffolds ensure desirable 

cell attachment and nutrients transport [3]. The stability of the fibers, which depends on 

the chemical structure, composition and processing procedure, can be further improved 

by post processing [2], [3], [19], [75], [77].  

2.5.2 Electrospinning conditions and parameters 

The ability for electrospinning to create tissue specific scaffolds arises from the 

adaptability of the process and the system control offered by a number of controllable 

processing parameters: 

1) Polymer and solution properties such as polymer type, polymer molecular weight, 

polymer concentration, viscosity, conductivity, volatility and surface tension,  

2) processing conditions such as electric field gradients, voltage, capillary diameters, 

distance from the capillary to the collector, solution flow rate,  

3) environmental conditions such as temperature, humidity, air velocity and static 

electricity.   

By adjusting these electrospinning parameters, most thermoplastic materials can be 

electrospun [48], [51]. Each of the parameters, individually or in conjunction with one 

another, can affect fiber diameter, morphology, and scaffold porosity [45], [78]. The 

effects of some of these variables on fiber diameter, diameter distribution and fiber 

morphology have been independently studied. The mechanical properties of the scaffold 

can be altered by the organization of the fibers, the types of the polymers used, and the 

size of the fiber constituents. Fiber orientation can also be controlled by changing the 

setup of the ground collector, for example by as using a rotating electrode[3], [12], [45]. 

After the scaffold has been produced, its mechanical properties and degradation 
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behaviors can be further modified by post-spinning processes such as annealing, 

stretching or crosslinking [50], [79]–[82].  

Empirical observations and analytical models have been utilized to provide quantitative 

prediction of the size of fibers fabricated by the electrospinning process [50], [63]–[65], 

[67], [83]–[85]. Some general trends can be summarized as follow: 

Concentration: At very low concentration, polymeric nano or micro particles will be 

obtained as a result of electrospraying [3], [68], [73], [86]. As the concentration 

increases, a mixture of beads and fibers will be formed. Further increase in concentration 

allows smooth nanofibers to form. At concentrations higher than the optimal 

concentration range, either fiber formation is prevented due to high viscosity, or micro-

ribbon fibers form due to incomplete solvent evaporation [22], [48], [68], [87]–[89].  

Molecular weight: Molecular weight affects the entanglement of polymer chains in 

solution, with longer chains being more entangled. More entanglement leads to and 

increase in solution viscosity [12], [22], [50], [73], [79], [88], [90]–[97]. Lowering the 

molecular weight results in the formation of beads. While increasing the molecular 

weight leads to chain entanglement and smooth fiber formation. Micro-ribbon fibers will 

be obtained if the molecular weight is too high.   

Flow rate: Several studies have shown that lower flow rates result in smaller fiber 

diameter [64], [84], [98]. Higher flow rate results either in fibers with larger diameter or 

beaded fibers [64], [73], [78], [99]. Further increases in the flow rate created fibers which 

were not completely dried before reaching the collector.  

Solution viscosity: It has been shown that continuous and smooth fibers cannot be 

formed at very low solution viscosity while too high of viscosity impedes jet formation. 

There is a limited range of viscosity over which electrospinning produces acceptable 

fibers [50], [67], [68], [85], [88], [92], [97], [100]–[103]. The solution viscosity is 

strongly correlated with molecular weight and polymer concentration, an increase in 

either concentration or molecular weight can increase the viscosity. On the other hand, 
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environmental parameters such as ambient temperature can also affect viscosity [65], 

[69], [88].  

Surface tension: Surface tension is a function of solvent composition and is mainly 

affected by the choice of solvent [14], [19], [50], [53], [92], [102], [104], [105] . For a 

fixed polymer concentration, reducing surface tension by using a more volatile solvent 

can convert beaded fibers to smooth fibers [73].  

Charge density and conductivity: The conductivity of the polymer solution is 

determined by the polymer and solvent used, as well as by the presence of ionic additives 

[50], [70], [83], [92], [106], [107]. The electrical conductivity can be tuned by adding 

ionic salts such as NaCl and KH2PO4. Solutions with high conductivity have high surface 

charge density and under a given electric field, high conductivity results in an increase in 

the elongation force on the jet. As a result, the solution undergoes a greater tensile stretch 

and forms thinner fibers.  

Voltage: For electrospinning, charged jets can only ejected from the Taylor cone when 

the applied voltage is higher than a certain threshold. However, the effect of applied 

voltage on fiber diameter is a bit controversial. Reneker et al. demonstrated that there is 

not much effect of electric field on the diameter of electrospun polyethylene oxide (PEO) 

nanofibers [108]. While Bhardwaj et al. suggested a higher voltage causes greater 

stretching of the solution, thus thinner fibers, several groups have also suggested that 

higher voltages result in larger diameter or beaded fibers [50], [66], [84], [109].  

Collector-tip distance: The influence of tip to collector distance on fiber morphology 

and diameter has been examined for various polymers [45], [49], [76], [109], [110]. It 

was found that a minimum distance is needed to provide sufficient time for the solvent to 

completely evaporate before the dry fibers reach the collector. On the other hand, beading 

is observed when the collector is placed too far from needle tip [49], [84], [111], [112].  

Thompson et al. studied the effects of experimental parameters on nanofiber diameter 

based on a model of electrospinning [64]. Their model indicates which parameters have 

the greatest influence on the fiber diameters. Among the 13 materials and operating 
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parameters studied in the paper, they evaluated the parameters on a relative basis to 

determine a strong-moderate-minor rating for the influence on fiber diameter. The result 

showed that volumetric charge density, distance from nozzle to collector, initial jet 

radius, relaxation time, and viscosity are the five parameters having the most significant 

effect on the jet radius. Initial polymer concentration, solution density, electric potential, 

perturbation frequency, and solvent vapor pressure have moderate effects on the fiber 

diameters. While parameters such as relative humidity, surface tension, and vapor 

diffusivity have minor effects on the resulting jet radius. Although this study did not 

consider the effect of temperature directly, temperature does affect solution density, 

vapor diffusivity, viscosity, and relaxation time.  Other potential factors such as solution 

pH, charge polarity and pressure were not included in their model. The 13 materials 

included in the study vary in structure and properties such as hydrophilicity, and the 

available experimental data included in the study are insufficient to fully validate the 

model results for most of the parameters. The electrospinning process is complex and it is 

difficult (or in some cases, impossible) to experimentally vary one parameter while all the 

others are kept constant. Varying one parameter at a time would give insight into the 

electrospinning process and suggest that to better control the process one must control the 

parameters which have the strongest effect. For each polymer type and solvent system, 

there is usually a relatively narrow set of experimental conditions that provide optimum 

results. Thus each polymer/solution system should be investigated independently to 

identify the effect of each parameter. 

2.5.2.1 Fiber alignment  

A stationary ground electrode collects the electrospun fibers in a random orientation. 

However, for many applications, it is essential to control the alignment of the fibers 

within the scaffolds. For example, the basic structure of tendon, ligament, dura mater, 

tympanic membrane and sciatic nerve bundles all consist of aligned collagen fibers 

[113]–[115]. The alignment is important as it defines the spatial arrangement that is 

significant for tissue function. It has also been reported that the arrangement of cells in 

controlled two- and three- dimensional architecture has beneficial effects on cell 

differentiation, proliferation and functional longevity [34].  
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To collect aligned fibers, several studies have examined different collector designs to 

control the orientation of electrospun fibers. There are currently three main types of 

collectors used to generate aligned fibers: parallel plates, rotating drums and rotating 

discs (Figure 2.1).  

 

Figure 2.1. Electrospinning collectors used to collect aligned fibers: (a) parallel 

plates, (b) rotating drum, (c) rotating disc.  

Parallel plates consist of two grounded conductive plates separated by a gap. Fibers are 

captured in the sapce between the plates in uniaxially aligned form. The mechanism of 

this alignment is explained by Li et al. when two conductive strips with an insulating gap 

are used, the electric field is altered, causing a different motion in fibers and causing 

them to align across the gap [116]. In contrast, when a continuous collector with no gap is 

used, the electrostatic forces have no preferential direction and cause random deposition 

of fibers. At the same time, repulsive electrostatic interactions between the deposited 

fibers impact the alignment. Continuous electrodes result in immediate discharge of 

fibers while electrodes with an insulating gap result in parallel deposition of fibers which 

remain highly charged after contacting the electrodes. The electrostatic repulsion of fibers 

with the same charge results in deposition of fibers with parallel alignment to reach the 
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lowest possible state of energy [116]. Rotating drum or disc collectors produce fiber 

alignment when the speed of rotation matches the fiber drawing rate.  

2.5.2.1.1 Determination of fiber alignment (2D FFT) 

Due to the importance of fiber and cell alignment in cell behavior and tissue engineering, 

it is essential to quantify and characterize the degree of alignment for a given scaffold. 

2D fast Fourier transform (FFT) of images of the deposited fibers provides a reliable and 

relatively straightforward method of measuring the degree of fiber alignment in 

electrospun scaffolds. 2D FFT has been used widely in the literature as a standard method 

for measuring the degree of scaffold alignment [113], [117].  

The 2D FFT function converts spatial information in an image into a mathematically 

defined frequency domain which maps the rate at which pixel intensities change. The 

FFT of an image containing randomly aligned fibers generates a frequency plot with the 

majority of white pixels concentrated symmetrically around the origin, and the FFT of an 

image containing aligned fibers will generate a frequency plot with peaks corresponding 

to the spacing of the fibers and the degree and direction of alignment [113], [117]–[119].  

The spectra generated by a 2D FFT are not easy to read and therefore translating the 

spectra into a plot is more direct way representing the degree of alignment. A plot of 

nominal pixel intensity versus orientation can be generated by summing the pixel 

intensities along the radius for each angle of the circular projection (0 - 360°). Often, the 

summation of pixels is only carried out between 0 - 180° as the frequency plot is 

symmetric along the 180° line. The summation generates an easily read plot showing 

peaks at the angles along which most of the fibers are aligned. A high, narrow peak is 

indicative of a higher degree of uniform alignment, while a broader peak or the presence 

of a shoulder on the peak indicates that there may be more than one principal axis of 

alignment and the alignment of the fibers is less organized.  

2.6 Use of electrospun fibers in tissue engineering 

Electrospun fibrous scaffolds are particularly attractive for tissue regeneration and 

biomedical applications due to their high surface area for cell adhesion and 
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interconnected porous network for cell penetration and migration [53], [64], [120]. The 

fibrous structures can be electrospun into controlled organization with fiber alignment to 

mimic the natural ECM structure. Electrospun fibrous scaffolds based on synthetic 

polymers, natural polymers, synthetic/natural blends, have been successfully studied for 

regenerating cartilage, bone, bladder, skin and neural tissues [3], [45], [47], [49], [52], 

[121], [122].  

The material choice for tissue engineering applications depends on the type of scaffold 

required, the nature of the tissues to be regenerated, and their time required for 

regeneration. The best material will fulfil the requirements of specific chemical, physical, 

and mechanical properties and degradation times required for the particular application.  

2.6.1 Synthetic vs. natural polymers 

Both synthetic and natural polymers can be used for producing 3D non-woven fibers via 

electrospinning. To date, more than 50 different polymers have been successfully 

electrospun [44], [49], [50], [63], [70], [84], [107], [108], [123], [124].  

For tissue engineering applications, synthetic biodegradable polyesters such as 

polycaprolactone (PCL), poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(Lactic-

co-glycolic acid) (PLGA) and poly(lactic acid-co-caprolactone) (PLCL) are preferred 

materials used for electrospun fibers due to their good processability and stable 

mechanical properties [45]. Synthetic materials offer a versatile alternative to naturally 

derived biopolymers, their mechanical properties can be highly tailored and they are easy 

to synthesize and shape [47]. Many synthetic polymers already have established 

mechanical histories and are routinely used in medical implants, substantially increasing 

their applicability for regulatory approval [47]. 

While a synthetic polymer scaffold can mimic the structure of the native ECM, the ability 

to electrospin a naturally occurring protein such as collagen can provide cells with a 

recognizable, physiologically relevant platform from which to proliferate and ultimately 

remodel [22]. With collagen constituting the majority of the human body’s structural 

ECM, electrospun collagen has been used in a number of tissue engineering applications 
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[7], [10], [12], [87], [125]–[129]. Other natural polymers such as fibrinogen, gelatin, silk, 

chitosan and elastin have been electrospun into nanofibers in the creation of bioactive 

ECM analogues in tissue engineering for their excellent bioactive properties [130]. 

However, natural biopolymers tend to display poor processability, which needs to be 

modified for better electrospinnability. For example, some of the natural polymers lost 

their stability during the electrospinning process due to the harsh solvent used and the 

high electric field [10], [13], [131]–[134]. As a result, these electrospun fibers need to be 

crosslinked in order for them to retain their fibrous form.  

2.7 Collagen  

2.7.1 Structure and Function 

Collagen is one of the most abundant proteins in the human body and it fulfills a variety 

of mechanical functions [135]–[137]. It is present in skin, arteries, cartilage, bones, 

dentin and in most of the extracellular matrix in general [43]. Most types of collagen 

present in the human body are in the form of fibers and they are the major building 

blocks in load-bearing tissues. As fibrous tissues are much stronger along the fiber 

direction than perpendicular to it, their properties are anisotropic. These fibrils are 

assembled into a variety of more complex structures to provide different mechanical 

properties for the target tissues [138]. For example, elastic skin, soft cartilage, stiff bone 

and tendons are all constructed from a hierarchical assembly of collagen fibers. 

Hierarchical structuring has the advantage of allowing for optimization and mechanical 

adaptation at every structural level [139].    

For example, every bone in our body will have a slightly different arrangement of the 

basic mineral collagen fibrils as the basic building blocks. As a consequence, the bending 

stiffness, fracture resistance and other mechanical properties of bone will differ from site 

to site due to the different local architecture [23].  

The collagen fibrils have a thickness in the range from 50 to a few hundred nanometers 

and are assembled in a complex hierarchical way into macroscopic structures. At the 

lowest level, the collagen molecules are triple-helical protein chains with a length of 

about 300 nm. These collagen molecules are further assembled into microfibrils in which 
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the collagen molecules are arranged in a staggered, parallel manner. Neighboring 

molecules are shifted by about 67 nm inside the fibrils. The covalent crosslinking 

between the collagen molecules provides the mechanical properties of the fibrils [139]. 

The hierarchical structure of collagen is illustrated in Figure 2.2.  

 

Figure 2.2. Schematic diagram illustrating collagen’s hierarchical structure 

(Adapted from [23]) 

2.7.2 Fibrillar collagens 

There are 28 different proteins known as collagens found in human [23], [138]. They can 

be grouped into a number of subfamilies. From the biomechanical point of view, the 

fabrillar collagens are of the most interest [140]. These proteins are characterized by a 

repeating banding pattern called D-banding, which has a periodicity of 64-67 nm, 

depending on the tissue. Within the fibril, collagen molecules of length 300 nm and width 

1.5nm are staggered with respect to their neighbors by multiples of D.  
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2.7.3 Collagen stability 

It has long been known that stability of the collagen triple helix is related to the content 

of the amino acids proline and hydroxyproline, which together make up about 20% of the 

total amino acids in human fibrillary collagens [141]. This is a result of the cyclic nature 

of the side chains that restricts flexibility about the peptide bond. Prolyl hydroxylation 

provides further stabilization. The mechanism of triple-helix stabilization by prolyl 

hydroxylation has generated much controversy but a general consensus is emerging that 

this is due to two effects: (1) increased hydrogen bonding through hydration networks 

and (2) the electron-withdrawing effect of the hydroxyl group [142], [143].  

2.7.4 Collagen as a biomaterial for tissue engineering applications  

Aside from collagen’s widespread presence in the body, its low cytotoxic responses, high 

water affinity, good cell compatibility, availability with different isolation methods from 

a variety of sources, and biodegradability make collagen an attractive biomaterial for 

tissue engineering applications [6], [22], [144]–[146]. The immunogenicity of the 

collagen is not insignificant and has been studied since the 1960s [147]. However, the 

clinical significance of such immunogenicity has been shown to be very low and is often 

considered to be negligible [147]. The possibility of synthesizing collagen-like peptides 

with the ability to self-assemble into nanofibrous structures permits the construction of 

well-characterized scaffolds for study of cell-matrix interactions and for applications in 

tissue repair [148].  

2.8 Electrospinning collagen 

In 2002, the electrospinning of collagen with the use of 1,1,1,3,3,3 hexafluoro-2-propanol 

(HFIP) as solvent was first reported [16]. Since then, numerous works on the 

electrospinning and characterization of collagen fibers have demonstrated that the 

electrospinning process has the potential to produce collagen fibers that closely mimic the 

structural and biological properties of the natural collagen ECM [7], [9], [22], [87], [91], 

[129], [136], [149]. Electrospun fibers of type I, II and III collagen dissolved in HFIP 

exhibited a linear relationship between polymer concentration and average fiber diameter 

[22]. Later, a more benign solvent, acetic acid, was used for electrospinning type I 
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collagen. Compared to HFIP, acetic acid is non-toxic and more economical, and can 

better maintain the ultrastructural integrity of the collagen [7], [150].  

2.8.1 Crosslinking of electrospun collagen fibers 

Recent studies have shown that collagen undergoes some conformation changes during 

electrospinning, and the electrospun collagen fibers does not retain its native structure 

[21], [136]. As a result, electrospun collagen lacks mechanical and structural stability 

upon hydration [7], [12], [16], [22], [129], [150]. In order to increase the stability of 

electrospun collagen, crosslinking is often needed. Crosslinking is essential to stabilize 

the electrospun fibers by targeting the intramolecular covalent bonds [134]. It is 

accomplished by the reaction of functional groups on the surface of the collagen fiber that 

can bridge and link to the adjacent functional groups to construct aqueous stable network 

[6]. This process is called crosslinking and can be used to tailor the rate of 

biodegradation, providing collagen networks which degrade at a specific rate into 

bioresorbable components such as amino acids.  

A number of crosslinking methods have been shown to successfully improve the stability 

and mechanical properties of collagen-based scaffolds [136], [151], [152]. These methods 

can be categorized into chemical, physical, biophysical and photochemical crosslinking 

[131], [136], [153], [154]. 

Each crosslinking method has demonstrated a different degree of structural and 

mechanical stability, largely attributed to the different crosslinking mechanisms, 

concentration and reaction time.  

Crosslinking with glutaraldehyde (GA) involves a heterogeneous crosslinking 

distribution that occurs only on the surface of the fibers, which leads to intermolecular 

crosslinks connecting distant collagen molecules [25]. The ability of GA to self-

polymerize accounts for its effectiveness as a crosslinker. 

Carbodiimide has been extensively used as an alternative to GA to introduce carboxyl 

group crosslinking. This approach is more cytocompatible as it doesn’t introduce foreign 

crosslinking molecules, less resistant to proteolytic attack, and less susceptible to 
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calcification [25]. However, as crosslinking only occurs at “zero distance”, the resultant 

crosslinking is not as strong as those produced by other methods that can crosslink 

proximate collagen molecules.  

Dehydrothermal (DHT) crosslinking is a physical crosslinking method performed at high 

temperature in high vacuum. Thermal energy was used to generate highly reactive groups 

from stable precursors to undergo chemical reactions [152], [153]. For collagen, thermal 

energy induces the formation of amide and ester crosslinks [155].    

Chemical crosslinking using glutaraldehyde vapor has been investigated the most, but 

this method is cytotoxic and results in calcification in host tissues [156], [157]. Physical 

crosslinking achieved by heat, dehydrothermal treatment (DHT) have also been used, 

however, this method compromises the stability of collagen due to thermal degradation 

[153]. Although genipin crosslinking showed promising results with controlled fiber 

swelling [129], previous study found genipin crosslinked collagen scaffold did not 

support neutral stem/progenitor cell differentiation due to the presence of unreacted 

cytotoxic genipin [158].  

2.8.1.1 Photochemical crosslinking 

Photochemical crosslinking serves as an attractive alternative to the aforementioned 

crosslinking methods. Both ultraviolet light with riboflavin as photoinitiator and green 

light with Rose Bengal have been proposed to stabilize collagen-based materials and 

enhance their mechanical properties [159], [160].  

Ultraviolet radiation is a crosslinking method that produces radicals in the form of 

unpaired electrons. Crosslinks are subsequently induced by bonding between these 

radicals. Photosentisizers such as cinnamate and riboflavin have also been used to 

promote UV crosslinking of collagen [25], [134], [151]. Although UV-riboflavin 

crosslinking has been used to treat keratoconus corneas, studies on collagen crosslinking 

with riboflavin have been associated with drawbacks, including cytotoxicity to 

keratocytes [161]. Long periods of irradiation have been shown to fragment and denature 

the collagen molecule [134]. In addition, the crosslinking occurs at the surface of the 
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scaffold, creating heterogeneous properties. The use of Rose Bengal excited by green 

light was suggested as an improved procedure. It has been used by ophthalmologists to 

detect corneal abrasions [162]. Photochemical crosslinking with Rose Bengal has been 

used by Chan et al. to improve the physiochemical properties of collagen gel for cartilage 

tissue engineering [159]. Their studies suggest that this crosslinking method thermally 

stabilizes collagen hydrogels and improves the mechanical properties. Later, the method 

was modified to stabilize the fibrous structure of electrospun collagen scaffolds [7]. With 

low concentration Rose Bengal, the fibrous morphology was well maintained with 

minimally toxicity [7].  

The exact mechanisms of the binding and interaction between Rose Bengal and collagen 

remain to be elucidated. One possible explanation is that water and ethanol provide 

ground state oxygen that may react with Rose Bengal to produce reactive singlet oxygen 

which then oxidizes surrounding molecules [159], [162]–[166].  

Nanofibrous scaffold made using laser irradiation photochemical crosslinking, scaffold 

nanofibrous architecture remained intact for at least 21 days, implying that cells cultured 

on these substrates will continuously experience topographical signals over prolonged 

time duration [7].   

2.8.1.2 Physical crosslinking  

An approach to enhance the aqueous stability of polymer systems without invoking the 

use of potentially cytotoxic chemicals is using physical crosslinking. This approach is has 

been well established and well characterized in the case of poly(vinyl alcohol) hydrogels 

produced using a low temperature thermal cycling process [58], [79]. An associated 

approach is to induce internal structural rearrangement on the molecular level without the 

use of additional chemical agents, but instead based on kinetic energy and momentum 

transfer. One way to achieve this is via ion bombardment or ion implantation. When 

reactive ions are used, the chemically-induced structural rearrangement could lead not 

only to stability enhancement but also to additional biochemical benefits such as 

improved cell adhesion [55], [56]. 
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Ion implantation is a well-established technique in the materials post-processing industry. 

Ionized atoms or molecules with well-defined energies or energy ranges are produced in 

an accelerator by heating a gas or using a strong electromagnetic field. These ions can be 

utilized in various ways to either modify or characterize materials. By carefully choosing 

the implantation parameters such as ion species, energy and dosage, it allows for the 

selective modification of tribological, chemical and physical properties of the material 

[57], [60], [79], [167]. For the treatment of polymers, control of the treatment process 

becomes more critical as excessive energy deposition could damage or denature the 

material [59], [79]. Broad-energy (non-monochromatic) ion beam implantation is often 

used because it provides a wider range of ion doping depths, thus distributing energy over 

a greater depth range and minimizing thermal damage [58]. Ion beam treatment can tailor 

both mechanical and chemical properties of polymer surfaces for specific applications 

[79]. By matching the scaffold properties to that of the native tissue, more normal and 

stable cell adhesion can be induced [35], [168]. Previous work in our lab determined the 

conditions to use ion beam treatment to modify the stability of collagen fibers prepared 

using electrospinnning techniques [126].  

2.9 Mechanical Testing Techniques   

While the structural-function relationship between collagen fibrils and constituent tissues 

is still being resolved, it is understood that the properties and organizations of single 

fibrils determine the overall tissue properties [169]–[172]. The properties of a specific 

structure rely on the architecture at the microscopic level, the defined diameter and 

properties of the single fiber constituent the structure determine the macroscopic 

mechanical properties of the tissue. Thus, the single fibril provides the key to scaffold 

structures from the nanoscopie to macroscopic length scale.  The overall mechanical 

properties of a fibrous scaffold are a function of the mechanical properties of individual 

fibers and the organization of the fibers within the scaffold [169]–[172].  

2.9.1 The overall scaffold mechanical property determination 

Planar biaxial mechanical testing allows determination of bulk mechanical properties by 

studying the two-dimensional stress-state of fiber mats [104], [171], [173], [174]. It was 
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found that the bulk mechanical response of the mats can be modulated by altering the 

fiber architectures[173]. Fiber alignment, fiber density and fiber intersection density can 

tailor scaffold mechanical behavior[171], [173].  

Stress-strain response of electrospun fiber mats can also be conveniently determined 

using conventional tensile testers [42], [175]–[178]. There are plenty of papers in the 

literature but fiber diameter, fiber density, fiber orientation and alignment renders fiber 

mats with different mechanical properties[42], [175], [176].  

Since the overall properties of the mats depend on the assemblies and properties of 

individual fibers, it is crucial to determine the properties of individual fibers that make up 

the scaffold [179]. Fiber mats with desired properties for particular applications can be 

obtained by assembling the fiber mats with controlled fiber material, fiber size, fiber 

alignment and fiber density.   

2.9.2 Single fiber property determination 

Conventional tensile tests can be used to determine the mechanical properties of 

individual polymer fibers with diameters larger than 10 µm [179]–[181]. As the fiber 

diameter decreases into the nanometer range, this technique is no longer applicable, as it 

becomes difficult to mount the single fiber without damage or slipping from the grip, and 

to maintain perfect alignment of the fiber with the loading direction to avoid unwanted 

bending moments [182]. Moreover, there are also claims that the mechanical properties 

of fibers deviate from those of the corresponding bulk material as the diameter decreases 

into submicron or nanometer range [74], [79], [170], [183]–[185]. To overcome these 

obstacles and determine the mechanical properties of single electrospun nanofibers, 

numerous mechanical characterization techniques have been proposed by different 

researchers based on tensile, stretching, resonance excitation and bending of fibers [61]. 

One of the most popular approaches makes use of the high 3-D spatial resolution and 

subnanonewton force sensitivity of the atomic force microscope (AFM)[8], [61], [81], 

[99], [125], [149], [172], [182], [186]–[200]. AFM-based methods have been used to 

perform three-point bending, nanoindentation, nanotensile and resonance contact based 

mechanical testing of nanofibers. 
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2.9.2.1 AFM based fiber mechanics determination 

The AFM has nano to piconewton force sensitivity and can detect Ångstrom-scale 

deformations. The working principle of the AFM is based on the interaction between the 

AFM tip and the sample surface upon or near contact. The determination of the 

mechanical behavior is done by measuring the bending of fiber when it is contacted by 

the AFM tip, by indentation of the fiber by the tip, or by tensile testing.  

The three-point bending test is the most common bending test. Fibers were fabricated and 

deposited onto a substrate covered with holes or grooves so that a section of the fiber was 

freely suspended. The ends of the fibers were either fixed onto the substrate surface by 

electrostatic force or glued to the substrate by ion deposition or other techniques. The 

fiber was bent by the AFM cantilever by applying a small deflection along its suspended 

length while force-versus-displacement data were collected. The fiber’s mechanical 

properties, such as Young’s modulus, bending modulus, and shear modulus, can be 

obtained using beam-bending theory. Materials such as conductive polymer nanofibers, 

biological materials, biodegradable polymers, and carbon nanotubes have been tested 

using the AFM-based three point bending setup [81], [182], [189], [190], [194], [197], 

[200], [201]. While in earlier AFM studies of the mechanical properties of nanofibers, 

elastic moduli were calculated from deflection measurements at a single point at the 

center of the suspended fibers, finding the precise center point of the fiber could be 

challenging. Considering the positional accuracy of the scanner, the scanner calibration, 

and the microscope controller stability, multipoints measurements were later performed 

to help achieve higher accuracy and smaller uncertainty based on all the measurements 

along the suspended fiber length [61], [79], [87], [185], [191], [202].  

Three-point bending using the lateral force arm is an approach that first deposits fibers on 

trenched wafers, with the suspended portion perpendicular to the trench, then the AFM 

arm was used to manipulate the fiber to determine its mechanical properties. With the 

AFM operating in the lateral force mode, the AFM tip was used to bend the fiber parallel 

to the trench length [8], [149], [172], [199]. The stress-strain properties of the fibers 

could be obtained by placing the AFM tip next to the midpoint of the suspended fiber, 

then using the tip to stretch the fiber laterally. Images or videos of the manipulation were 
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collected to determine the fiber size and tip travel distance. The lateral force measured 

was converted into the stress exerted on the fiber to generate stress-strain curves. The 

mechanical properties of the fibers, including their elastic modulus and ultimate tensile 

strength, were determined using these curves. This method allows a large range of fiber 

displacement with the possibility of manipulating the fibers until fiber failure. However, 

this method required the test fibers to be oriented perpendicularly to the trench to provide 

an easy geometry for data analysis, thus errors in these measurements are larger than 

those of other nanomanipulation methods, such as the scanning mode AFM bending test 

[149].  

AFM-based uniaxial tensile tests have been performed on polymer fibers such as 

polyethylene oxide (PEO) [186]. The fiber was first isolated and one end was attached to 

a movable optical microscope and the other to the piezoresistive AFM cantilever tip. The 

AFM tip was used to measure the force exerted on the fiber as it was stretched by moving 

the microscope stage. Compared to other tensile tests on polymer nanofibers, this method 

directly manipulates a single fiber and does not require the perfect alignment of the fiber 

to the loading direction [61], [179], [182], [196], [203], [204]. However, the resolution is 

limited by the displacement resolution of the microscope stage and the force resolution of 

the AFM. The force sensitivity is also limited by the combination of different parts of 

actuators and the spring constant of the cantilever [61].  

AFM indentation uses the AFM cantilever tip to push and probe the curved surface of 

fibers to determine their elastic and elastic-plastic behavior. However, due to the 

difficulty of probing the curved surface of the fibers and inaccuracy due to the effect of 

underlying substrate, this method has not been widely adopted for use on polymeric 

fibers.  

Wang et al. used an AFM tip in contact mode to indent electrospun silk fiber [188]. Since 

the diameter of the fiber was > 800 nm and the tip of the AFM cantilever was < 10 nm, 

indentation was performed under the assumption that the measurements were free of 

substrate effects. However, due to the uncertainty in the cantilever stiffness and tip 

geometry, the absolute value of the modulus could not be determined. Instead, a reference 
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sample of epoxy with predetermined elastic modulus was indented using the same probe 

and parameters, by comparing the contact area and loading curves of the AFM tip on the 

epoxy and the silk fibers, the elastic modulus of the silk fibers could be calculated [188]. 

Tan et al. studied the mechanical properties of poly(L-lactic acid) (PLA) nanofibers and 

used the Hertz model to analyze the force-indentation data. The model treated the fiber as 

a cylinder and the AFM tip as a sphere. The elastic modulus was found to vary with the 

fiber diameter, with higher values for smaller-diameter fibers [205]. Other studies used 

AFM indentation test to determine modulus of fibers or spatial variation of the fiber 

cross-sections [61], [206], [207]. In each study, various assumptions had to be made in 

order to calculate the modulus using contact mechanical models. For example, several 

studies assumed there was no change of Poisson’s ratio, spring constant and tip geometry 

during the indentation test [61]. Additional assumptions such as comparative tip radius 

and indentation depth, tip geometry and relative curvature between the tip and fiber 

surface need to be made to ensure accuracy and applicability of each model.  

2.9.2.2 Non-AFM based fiber mechanics determination 

A number of commercial uniaxial tensile testers have been used for single fiber or 

multiple fiber mechanical testing. Fiber that can be tested with these instruments are 

limited to a fiber diameter larger than 300 nm with a force resolution of 50 nN [61], 

[100], [179], [180], [182], [196], [208], [209]. To perform a tensile test on a single fiber, 

the fiber has to be isolated and properly mounted to prevent it from slipping out or 

breaking at the grips. As the fiber size becomes so small that directly mounting the 

sample becomes difficult, a frame that holds aligned fibers could be used to partition and 

isolate a single fiber for testing. The isolated portions that contained single fibers were 

chosen and cut to include only the desired fiber for testing. Tan et al. performed tensile 

tests on electrospun polycaprolactone (PCL) fibers with diameters of the range of 300 – 

900 nm. They found no apparent correlation between the Young’s modulus and fiber 

diameter, while the tensile strength and yield stress were size dependent [179], [182]. 

Chew et al. also used a commercial nanotensile testing system for electrospun PCL 

nanofibers [196]. Only specimens within the gauge length of 20 mm were used for 

testing, while specimens that failed near the edge of the mount were discarded. The 
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results showed that the Young’s modulus and tensile strength increased with reduced 

fiber size. Both strength and stiffness were at least twofold higher than those of bulk 

PCL. However, the mechanical properties were plotted against the average diameter of a 

group of fibers rather than individual fiber diameter.  

Due to the difficulties in handling the fine fibers, the smallest fiber that could be handled 

by the system was around 1 µm. Misalignment between the sample axis and loading 

direction also resulted in an unwanted bending moment that led to premature sample 

failure [182], and stress-strain curves reported in some of the studies are rather noisy. The 

sample preparation, partition, fixation, and manipulation of a single fiber can be time 

consuming and challenging. To better measure the fiber size and mechanical properties, 

the AFM has been suggested for its better sensitivity and higher resolution [61].  

The resonance behavior of polymer fibers can be used to determine their mechanical 

properties. Exposing fibers to external stimuli, such as electric fields or chemical vapor, 

can be used for fiber excitation, and the resonance frequency measured in the system can 

them be modeled to obtain the fiber elastic modulus [210]–[212]. Boussaad et al. 

measured the mechanical properties of a polymer wire (~7µm) made from 

nitrocellulose/toluene sulfonamide formaldehyde resin [210]. The polymer wire was 

bridged across the two prongs of a microfabricated tuning fork. As the wire was formed 

by stretching it has a built-in mechanical stress. When the wire is exposed to organic 

vapors, the stress in the polymer wire diminishes, and the changes in the resonance of can 

be detected by the tuning fork.  Cuenot et al. measured the resonance frequencies of AFM 

cantilevers in contact with various nanomaterials to obtain their mechanical properties 

[211], [212]. The mechanical resonance frequency was measured by modulating the 

cantilever deflection with an oscillating electric field applied between the sample holder 

and AFM tip. The change in the resonance frequency when the AFM tip touched the fiber 

was used to calculate the Young’s modulus of specimens such as polypyrrole nanotubes.  
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3 Materials and Methods  

3.1 Materials  

The following materials (Table 3.1) were purchased for electrospinning and crosslinking 

the collagen fibers 

Materials Supplier 

Hexafluoroisopropanol (HFIP) (105228, 

1,1,1,3,3,3-hexafluoroisopropanol) 

Sigma Aldrich, Oakville, ON, Canada 

Poly (ethylene glycol) (PEG) (309028, 10 

kDa) 

Sigma Aldrich, Oakville, ON, Canada 

Genipin (MW = 226.23g/mol) Challenge Bioproduct Co 

Anhydrous Ethyl Alcohol Commercial Alcohols, Brampton, ON, 

Canada 

Glacial acetic acid Caledon Labs, Georgetown, ON, Canada 

 

3.2 Isolation and purification of Type I collagen from 
rat tails 

Type I rat tail collagen was extracted and purified with methods established previously 

[62], [213]. A detailed extraction procedure is presented in Appendix A. In short, a frozen 

rat tails were thawed in 70% ethanol for at least 30 minutes, scapular and forceps were 

used to dissect that rat tail skin and expose the white collagen fibers. Collagen fibers was 

mechanically extracted from rat tail tendons, incubated in sterile 0.0175 M acetic acid for 

7 days at 4 °C with mechanical stirring. Undissolved collagen fibers were removed by 

centrifugation at 10,000 g at 4 °C for eight hours. The collagen solution was kept frozen 

at -20 °C to be lyophilized for collagen powder.  
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3.3 Collagen solution / shell solution  

5 wt% type I collagen in HFIP was prepared by adding 84.2 mg of type I collagen from 

rat tail to 1 mL of HFIP, and vortex at room temperature for approximately 2 hours to 

dissolve the solution.  

25 wt% collagen in 40 v/v% acetic acid was prepared by adding 340 mg of type I 

collagen from rat tail to 1 mL of 40 v/v% acetic acid, and dissolve overnight.  

3.4 Core solution  

Bovine Serum Albumin (BSA) solutions with concentrations of 10 mg/mL were prepared 

as previously established [62]. The solution was prepared by dissolving 100 mg of BSA 

in 10 mL of double distilled water to obtain a concentration of 10 mg/mL. In order to 

provide stability and to prevent mixing during the electrospinning process, poly(ethylene 

glycol) (PEG), with molecular weight of 10 kDa, was dissolved into the BSA core 

solution to achieve a final concentration of 200 mg/mL. 

3.5 Electrospinning  

3.5.1 Humidity control 

The control of humidity was achieved using a custom built split flow chamber (Figure 

3.1). A dry nitrogen stream was split into two. One stream flowed through a water bath 

where it was saturated with water vapor and the other stream remained dry. Humidity 

was controlled by controlling the ratio of the blending of these two streams. Humidity 

and temperature levels were constantly monitored using a humidity and temperature 

monitor (OMEGA Engineering Inc). A humidity control within the range of 5 – 65 (± 5) 

% at a temperature of 21 ± 2 °C can be achieved with our system. 
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Figure 3.1. Humidity controlled chamber for electrospinning  

3.5.2 Solid random fibers  

5 wt% collagen in hexafluoroisopropanol (HFIP), 22wt% and 25wt% solution of collagen 

in 40v/v% glacial acetic acid (Caledon Labs, Georgetown, ON, Canada) were prepared 

for electrospinning. The solution was transferred into a 1 mL syringe, which was 

mounted on a syringe pump (Harvard Apparatus). The spinning solution was pushed 

through a blunt stainless steel needle (22G, Hamilton) at a constant flow rate of 0.15 

mL/hr. A voltage of 20 kV was applied to the syringe needle relative to the grounded 

substrate placed at a distance of 20 cm from the needle tip. Collagen solution was 

electrospun at room temperature at controlled humidity ranging from 20 to 55%. 

Humidity level was recorded at the beginning and the end of each run using a humidity 

and temperature monitor (OMEGA Engineering Inc). 
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3.5.3 Aligned fibers  

By replacing the stationary collector with a rotating mandrel, aligned fibers can be 

collected with a rotation speed of 7000 rpm and a mandrel diameter of 10 cm. Two layers 

aligned fibers can be obtained by placing one layer over the other orthogonally. 

The mandrel was rotated by a variable speed DC motor which was powered by a 0 – 30 

direct current voltage (DCV) source. The motor was capable of 10,000 rpm unloaded, but 

could only spin the mandrel at a maximum of 7000 rpm. To collect aligned fibers, the 

maximum rotation speed of 7000 rpm was used.  

3.5.4 Core-shell fibers  

With previously established procedure [62], core-shell polyethylene glycol 

(PEG)/collagen fibers can also be produced by using a core-shell needle. The dual 

syringe pump (Model 33, Harvard Apparatus), was used to control the flow rate of the 

core and shell solutions independently. The two solutions were fed concentrically into 

spinneret with the 20 gauge and 30 gauge needles for the outer and inner needles 

respectively. The shell solution (collagen) was pumped at 0.18 mL/hr and the core 

solution (PEG) was pumped at 0.06 mL/hr. The voltage source and electrode collector 

were the same as those used in electrospinning solid fibers. 

3.6 Crosslinking 

3.6.1 Genipin crosslinking 

Genipin (Challenge Bio Products) crosslinking was performed in a solvent system 

consisting of ethanol and water. The concentration of genipin was 0.03 M in 3% water in 

ethanol and the reaction time was 3 days. Crosslinking was performed following 

procedures previously established [89], [129]. The electrospun collagen fibers were 

placed in vials containing 20ml of the crosslinking solution and placing the vials in a 37 

°C shaker bath to speed up the crosslinking reaction. The lids of the vials were not 

screwed tightly allowing solution exposure to oxygen in the air. After the crosslinking 

period, all samples were stored in pure ethanol for further tests.  
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3.6.2 Green light and Rose Bengal crosslinking 

For green light crosslinking, 25 wt% collagen solution in 40 v/v% acetic acid was 

prepared with 0.1 w/v% Rose Bengal. Electrospinning was carried out as described in 

Section 2.2. To distribute the Rose Bengal suspension evenly, the resulting collagen 

solution was vortexed before electrospinning.  

To crosslink the fibers, electrospun collagen fibers were immersed in 99.5% isopropanol 

(anhydrous) or pure ethanol and irradiated with a light wavelength at 520nm, at an 

intensity of 7 mW/cm2 for 22 hours. The UV-Vis spectra of Rose Bengal in water, 

isopropanol and ethanol are shown in Appendix D. The intensity of the light was 

measured with a light meter (LI-COR LI-190R).  The light intensity is a function of 

distance and the relationship between light intensity and distance is shown in Appendix 

C. After crosslinking, the scaffolds were dried in vacuum overnight to remove 

isopropanol residue.  

3.6.3 Ion beam implantation 

Nitrogen (N+) ion beam was generated using the 1.7 MV tandetron accelerator. Fibers on 

silicon wafers were mounted on the sample holder with a 1 µm thick tantalum (Ta) foil 

placed 2mm in front of the samples. Ion beam treatment was performed with the samples 

placed vertically at room temperature in ultra-high vacuum (~ 10-8 torr). The beam 

current was around 100nA for a total dosage of 8 x 1015 ions/cm2 and 4 x 1015 ions/cm2.  

3.7 Characterization 

3.7.1 Scanning electron microscopy (SEM) 

Fiber size and morphology were observed using a high-resolution scanning electron 

microscope (LEO 1540). The fibers were not sputter coated and were kept intact by using 

a low accelerating voltage of 1 kV.   

3.7.2 Transmission electron microscopy (TEM) 

A Philips CM 10 transmission electron microscope with a digital camera was used to 

obtain images of core-shell collagen fibers structure. Collagen core-shell fibers were 
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directly electrospun onto a copper TEM grid with 600 meshes. An accelerating voltage of 

60 ~80kV was used to characterize the core-shell structure.  

3.7.3 X-ray photoelectron spectroscopy (XPS) 

The elemental chemical composition and chemical structure of the collagen sample 

surface was analyzed by an X-ray photoelectron spectroscopy (XPS) system from Kratos 

Axis Ultra. The 210 W Al-Kα monochrome source tested the samples in the hybrid mode 

with 90◦ take-off angles. The pass energy of the survey scan was 160 eV and the high-

resolution scan was 20 eV. Data analysis and multipeak fitting was performed by 

CasaXPS software.  

3.7.4 Fluorescence Microscopy  

A compound fluorescence: Imager Z1 with multichannel fluorescent imaging capability 

was used to obtain fluorescence images of the stained cells. Cell cytoskeleton and cell 

nuclei were imaged with AF 568 and DAPI channels respectively.   

3.7.5 Imaging processing (ImageJ) 

3.7.5.1 Fiber diameter 

ImageJ was used to determine fiber diameter. The scale bar on the image was first 

measured in pixels and calibrated into actual length/pixel. Fiber diameters were then 

measured in pixels and converted into nanometers. For each sample, four images were 

acquired and 30 fibers were randomly selected for each image for measurement. To 

measure the fiber diameter, a line was drawn on the fiber perpendicular to its axis. The 

length of the line was automatically converted into micrometers by the software. The 

diameter distribution of a fiber mat was determined from 120 randomly chosen fibers on 

four SEM images captured randomly inside a 1 cm2 area. The data was then statistically 

analyzed using Origin 8. The statistical significance of data sets were evaluated using a 

one-way analysis of variation (ANOVA) included in the software.  
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3.7.5.2 FFT analysis  

ImageJ and Photoshop were used to carry out 2D FFT analysis of the aligned fibers. 

Photoshop was used to crop unnecessary data that may obscure the FFT analysis from the 

image (e.g. scale bar and imaging parameters). ImageJ was then used to generate the FFT 

frequency plot, and an oval-profile plug-in was used to sum the pixel intensities along the 

radius for angle of the projection (0 - 360◦). This data was then imported into Origin 8 to 

construct a plot of intensity versus angle.  

3.8 Mechanical Testing  

3.8.1 Sample preparation 

All fibers were deposited on custom-designed silicon substrates with various width and 2 

µm depth. Trenches were fabricated by photolithography and reactive ion etching at the 

Western Nanofabrication Facility (London, Canada), using a custom-designed mask 

produced at the University of Alberta NanoFab facility (Edmonton, Canada).  

Atomic force microscopy experiments were performed using a multimode AFM with a 

NanoscopeIIIa controller (Bruker). DNP-S10 silicon nitride cantilevers (Bruker) with 

nominal spring constants of 0.12 N/m were used for AFM imaging and mechanical 

testing. Actual spring constants were measured using installed software based on the 

thermal noise method. Measurements were performed at a temperature of approximately 

32 °C at the sample position, and the humidity was kept at 35% by using a AtmosBag 

(Aldrich). The spring constant of each cantilever was checked periodically throughout the 

experiments.  

Using a microscope (Olympus SZ-STS) attached to the AFM optical head, the precise 

locations of suitable fibers suspended over gaps were identified. The targeted areas were 

then imaged in contact mode. The scanning position and size were adjusted to include the 

entire suspending portion and a sufficient fraction of the supported substrate of each 

target fiber to facilitate subsequent mechanical testing (Figure 3.2).  
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Figure 3.2 AFM height image of fibers suspended over trenches with sufficient 

fractions of the support substrates allowing fiber height measurements and 

substrate mechanical testing.  

3.8.2 Force volume measurement 

AFM force volume mode was used to perform the mechanical testing as previously 

established [79], [191], [193]. A force (F) was applied to the sample at multiple points 

along each suspended fiber as the piezo moved the sample upward toward the AFM tip. 

The deflection of the cantilever (Δy) as a result of the vertical displacement of the sample 

(Δz) was acquired to obtain force curves. The ramp size which is the vertical 

displacement of the piezo was set between 1 to 2 µm and the trigger threshold, which is 

the maximum deflection of the cantilever) was set to 150 – 200 nm for all fibers.  

3.8.3 Contact AFM force plots 

In contact AFM force plots, the horizontal axis demonstrates the vertical displacement of 

the probe relative to the sample, and the deflection of the cantilever is plotted on the 

vertical axis. An example of a force plot is shown in Figure 3.3. 
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Figure 3.3. Deflection of the cantilever vs. sample  

Each force plot provides significant information about sample-tip interactions. As the tip 

approaches the sample, it is attracted to the surface due to various forces such as 

electrostatic and / or surface tension. From the graph, direction of 1 indicates the piezo 

extends and the tip descends, however, there is no contact with the sample yet. As the tip 

is getting close to the surface, the tip is attracted to the sample by the forces near the 

surface, indicated by the dip show in 2. As the contact between the tip and surface was 

established, further extension of the piezo results the cantilever bends upward as its tip 
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presses into the surface. After the cantilever reaches the trigger threshold show in 3, the 

piezo would retract and this causes relaxation of the cantilever until tip forces are in 

equilibrium with surface forces show in 4. As piezo starts retracting the cantilever keeps 

bending downward due to the attractive force from the surface keep the tip in contact 

with the sample surface. During retraction, when the tip eventually breaks free of the 

attractive forces on the surface, the cantilever rebounds sharply upward to its equilibrium 

position, this sudden movement is represent by 5. After which, the piezo continues 

retracting and while the tip remains in its equilibrium position as there is no further 

contact with the sample.  

Force curves reveal useful information about the elasticity of the material the cantilever 

interacted with. Cantilever deflection for a given downward tip movement is an 

indication of the material’s elasticity. For hard materials, the cantilever will experience 

larger deflections compared with softer samples.   

3.8.4 Determination of the elastic modulus 

Mechanical bending tests were performed as previously described [191], [193]. This 

technique is performed by measuring force curves on a grid of positions using force-

volume mode. Each force curve records cantilever deflection versus the vertical sample 

displacement. Specific points on the contact image were selected for force curve 

collection. Approximately 900 points were selected to acquire force curves over an area 

containing the entire suspended portion of the fiber and parts of the rigid substrate 

(Figure 3.4). The force curves were acquired with ramp sizes of 0.8-1.4 μm at a ramp rate 

of 1.03 Hz. For each force curve, the maximum cantilever deflection was limited to 250 

nm.  
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Figure 3.4. AFM height image of fibers suspended over trenches with points that 

were selected to acquire force curves. (black points: points selected as being on 

fibers; blue points: points on the rigid substrate). Other measurement positions (red 

points) are not used in the analysis, but serve to verify the registration between the 

image and grid of force curves 

Fibers with diameters in the range of 60-300 nm and suspended lengths of 5.1-7.2 μm on 

trenched silicon substrates were chosen for AFM mechanical testing.  

The diameter of a fiber was determined from the height profile of the AFM image on the 

supported portion of the fiber. The diameter was measured at three different locations 

along the supported segments, and the average and standard deviation were calculated.  
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3.8.5 Analytical models 

3.8.5.1 Pure bending model 

The simplest beam model, Euler-Bernoulli model, was used to analyze the experimental 

data. A fiber with suspended length 𝐿 is subjected to an applied force 𝐹 at a distance 

𝑎 from one of its ends. The deflection 𝛿(𝑎) of fiber is given by 

δ(a) =  
F

3EI
[

a(L−a)

L
]

3

                                                    (1) 

where 𝐸 is the Young's modulus of the fiber and I is the moment of inertia (
πd4

64
 for a 

circular cross section). 

The vertical sample displacement 𝛥𝑧 must equal to the sum of the cantilever deflection 

𝛥𝑦 and fiber deflection 𝛿(𝑎). Since the force applied by the AFM cantilever tip is 

governed by  F = kΔy, where 𝑘 is the spring constant of the cantilever, equation (1) 

becomes 

Δz =  Δy [1 +  
k

3EI
(

a(L−a)

L
)

3

] .                                             (2) 

Therefore the slope of a force curve along a suspended fiber is expected to be 

dy

dz
= [1 +

k

3EI
(

a(L−a)

L
)

3

]
−1

.                                           (3) 

Young's modulus 𝐸 of the fiber can be determined by fitting this equation to the force-

curve slopes measured as a function of position 𝑎 along the fiber.  

Igor Pro (WaveMetrics) with custom analysis routines was used to analyze force data. 

Force curves on the fiber and the substrates were first identified (Figure 3.4). Because the 

deflection signal is initially uncalibrated, a histogram of the slopes on the rigid substrate 

or fiber supported by the rigid substrates was used to determine a calibration factor on the 

assumption that the cantilever deflection on the rigid substrate must equal to the piezo 

displacement after contact is achieved (i.e., 
𝑑𝑦

𝑑𝑧
= 1). The slopes of the force curves along 



www.manaraa.com

40 

 

the suspended fiber were calibrated using this factor and were plotted along the fiber as a 

function of position, as shown in Figure 3.5. The resulting curve was fit to Eq. 3 to 

determine Young’s modulus 𝐸 of the fiber. The agreement between the experimental data 

and the derived curve for a clamped-beam model demonstrates that the multi-point 

mechanical test with the Euler Bernoulli model is valid for the collagen fibers.  It is also 

assumed that the fibers are firmly attached to the surface at the supporting substrate so 

that fiber displacement on the substrate can be neglected. If there is slippage of cantilever 

on the collagen fibers, the force-displacement curves would have sudden jumps and the 

slopes vs. displacement cannot be fitted with Euler-Bernoulli model. In this case, the 

particular fiber would not be considered for mechanical property determination. Similar 

observation was reported previously [193].  

 

Figure 3.5. Relative slopes of the force plots and the curve fit obtained from multiple 

points along the fiber  

3.8.5.2 Deflection due to Tension 

For AFM three point bending tests, the deflection of the fiber is due to tensile, 

compressive and shear deformations. When the aspect ratio is much greater than one, 

shear stress is negligible in comparison to bending stress[193]. This is the assumption 
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used in the Euler- Bernoulli model and was adapted for use in most studies[81], [125], 

[182], [186], [197], [200], [209], [214], [215].  

Heidelberg et al. showed that tensile stress due to elongation of a deformed fibers, has to 

be taken into account when the fiber displacement is comparable or larger than its 

radius[216]. The study demonstrated that in some cases an apparent increase in Young’s 

modulus at small diameters (50nm – 100nm) was an artifact of models when the effects 

of fiber stretching was neglected. 

Building on the Heidelberg model, the existence of an initial tension in the fibers and a 

tension due to the elongation of fibers were taken into account by Hudson et al. [191]. 

Hudson et al. considered the case in which a constant initial tension T0 was applied to the 

fiber. It was found that for small diameters fibers under this condition, even in the small-

deformation limit, axial tension due to both the applied force and a pre-existing strain has 

a significant effect on fiber deflection. 

3.9 Cell culture on electrospun collagen fibers  

IMR-90 human fetal lung fibroblasts were obtained from Center for Translational Cancer 

Research (London, ON). Fibroblasts were plated on T 25 cell culture flasks at a density 

of 4 x 105 cells. The cells were cultured in minimal medium containing growth media 

(RPM1 1640. 1x + 10% FBS (foetal bovine sera)). The cells were incubated at 37◦ in a 

humidified atmosphere of 5% CO2
 :air. For maintenance of cell cultures, the medium was 

changed every 72 hours. Fibroblasts were passaged between 24 to 26 times for this study.  

The following procedure is used to seed and culture fibroblasts on crosslinked 

electrospun collagen samples: 

1.      Immerse samples in 70% ethanol for 30 minutes for sterilization, and then leave the 

samples to air dry for 15 minutes 

2.      Remove the cell culture flask with fibroblasts from incubator and aspirate the 

growth media from the fibroblasts  

3.      Add 1ml of penicillin streptomycin (Pen Strep) into 100ml of growth media (RPM1 

1640. 1x + 10% FBS (foetal bovine sera)) and gently stir and mix the solution 
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4.      Open vacuum, use a glass pipette to aspirate the media out of the flask (tilt the flask 

so no cells are being touched by the pipette tip) 

5.       Use the 5ml plastic pipette to add 1mL of trypsin into the cell flask and gently stir 

to detach the cells from the bottom (wait for a minute or two for the cells to detach) 

6.      Use 10mL plastic pipette to add 10mL growth media (RPM1 1640. 1x + 10% FBS) 

to flush the cells into single detached cells 

7.      Use 10mL plastic pipette to transfer 9mL of cell solution into a centrifuge tube 

8.      Take 500 µL of cell solution into 19.5mL of PBS to make a 40x dilute solution 

9.      Use Beckman Coulter Z1 Coulter particle counter to count the cells (two times, 

each count gives cell counts in 0.5mL of solution), calculate the cell count per mL 

10.  Disposed the counted cells into waste bottle 

11.  Dilute the cell solution accordingly using the growth media, place ~10000 cells/well 

into a 24 wells plate 

12.  Add cell solution containing ~10000 cells into each well containing 

To apply the fluorescent label (staining) to the cells for confocal and fluorescence image, 

the following procedure was used: 

1. Fix the cells using 4 wt% of paraformaldehyde for 45 minutes.  

2. Rinse in PBS three times with PBS (5 minutes each).  

3. Wash the samples with 0.1wt% Triton X-100 in PBS for 10 minutes to permeabilize 

the cell membranes for fluorescent stain.  

5. Rinse the samples in water for 1 minute  

6. Rinse the samples in PBS twice (5 minutes each).  

7. Apply Universal SNIPER Blocker for 10 minutes under aluminum foil  

8.  Dilute 1:100 Alexa 568 in antibody diluting solution, apply the antibody and incubate 

for 30 minutes in covered humidity chamber.  

9. Rinse off excess antibody in PBS twice (5 minutes each).  

10. Dilute DAPI 180 µM stock solution into 1:300 solution and stain the samples in dark 

for 2 minutes.  

11. Rinse the samples in PBS twice (5 minutes each) 

12. Mount the samples with 1 drop of Pro-Long Gold Anti-Fade mounting media.  
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4 Results  

This chapter starts with a fundamental study on the production and process optimization 

of collagen fibers using the electrospinning technique. The effects of humidity on fiber 

size and morphology attribute to the hydrophilic property of collagen and solvent systems 

are investigated (Section 4.1). To demonstrate the electrospun fibers can mimic the native 

tissue structure and morphology, aligned electropsun collagen fibers were produced and 

compared to rat tympanic membrane (Section 4.2). Core-shell collagen fibers were also 

produced to demonstrate possible bioactive molecule encapsulation for drug delivery 

applications (Section 4.3).    

As spun collagen fibers are not stable in an aqueous environment including cell culture 

media. Chemical, photochemical and physical crosslinking treatments were applied to 

enhance fiber aqueous stability (Section 4.4), Subsequently, the change of fiber 

mechanical properties due to crosslinking were measured using AFM (Section 4.5). In-

vitro cell compatibility of the crosslinked collagen fibers was assessed using human lung 

fibroblasts (Section 4.6).  

The following flow-chart illustrates the outline of this chapter.  
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4.1 Effect of humidity on fiber size and morphology  

To produce fibers with uniform morphology and within a particular diameter range, 

electrospinning processing parameters such as voltage, fiber to collector distance, 

solution concentration and solution flow rate were studied thoroughly and the results 

were in consistent with previous studies [67], [84], [89]. It was found that rat tail type I 

collagen produces bead-free fibers with circular cross-section at a concentration of 20 – 

25 wt% in 40 v/v% aqueous acetic acid solution with a 20 cm distance at 20 kV.  

On the contrary, the environmental parameters of the electrospinning process are 

generally less studied. The environmental parameters for fiber formation include 

temperature and humidity. Between these two parameters, as most experiments are 

carried out at room temperature, the effect of humidity on fiber production is easier to 

control. As both collagen and acetic acid are hydrophilic, we hypothesize that 

environment humidity would have impact towards fiber formation. Thus, we investigated 

the effects of humidity on collagen fiber size and morphology by changing the humidity 

at a constant temperature.  

 Figure 4.1 shows the change of fiber morphology and size with different humidity levels 

at 22 ± 2 ◦C. At low humidity levels (20 % and 25 %), large fibers presented ribbon-like 

morphologies. With increasing humidity, more fibers with a cylindrical cross-section 

were obtained.  

Figure 4.2 indicates that for fibers produced with 25 wt% solution, the average fiber 

diameter decreases with increasing humidity. The increasing humidity also resulted in a 

significant reduction in the mean diameter distribution.  

To demonstrate that other parameters (i.e. solution concentration) can also affect fiber 

size and distribution, a lower solution concentration of 22 wt% was used at a constant 

humidity of 35 % to produce fibers with reduced average fiber diameter and fiber size 

distribution (the red point in Figure 4.2). Similar effects of solution concentration on fiber 

diameter have been observed by others [9], [26], [23], [46], [50], [29], [35], [49] .  
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Figure 4.1 SEM images of electrospun collagen fibers spun with 25wt% collagen 

solution in relative humidity (RH) levels of (a) 20%, (b) 25%, (c) 30%, (d) 35%, (e) 

40%, (f) 45%. Scale bar: 1µm. 

 

Figure 4.2. Plot of average fiber diameter as a function of relative humidity for a 25 

wt% collagen solution (black squares with standar deviations indicated by error 

bars). Average fiber diameter and fiber size distribution can be further reduced by 

reducing the solution concentration (red circle). 
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A similar study of the effect of humidity on electrospun collagen fibers was performed 

with 5 wt% collagen in HFIP. As seen in Figure 4.4, the dependence of fiber morphology 

and size on humidity was similar to that seen with 40 v/v% acetic acid as the solvent 

system. Figure 4.3 shows the change of fiber size and morphology with different 

humidity levels at room temperature. All SEM micrographs were taken at 5000 X 

magnification with 3.6 mm working distance (WD) at 1 kV. The low accelerating voltage 

was used to avoid the use of conductive coatings in SEM to ensure true fiber 

visualization and fiber size determination. At low humidity (20 % and 25 %), collagen 

fibers are flat ribbon like and some with dog-bone shaped cross-section due to fast 

evaporation of the solvent and fiber collapsing (arrows in Figure 4.3a). As humidity level 

increases, more fibers with cylindrical cross-section were obtained. Increasing humidity 

level also resulted in a reduction of the fiber diameter distribution (Figure 4.4).  

 

Figure 4.3. SEM images of electrospun collagen fibers spun with 5 wt% collagen 

solution in HFIP at relative humidity (RH) levels of (a) 25%, (b) 30%, (c) 35%, (d) 

40%. Scale bar: 2 µm. 
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Figure 4.4. Plot of average fiber diameter as a function of relative humidity for a 5 

wt% collagen solution in HFIP. 

The variation of fiber size and morphology with humidity may be attributed to the 

hydrophobicity of the solution and change of solution viscosity during the spinning 

process. In the current study, the solvent system 40 v/v% acetic acid and HFIP are water 

miscible. While collagen is water soluble, the presence of humidity will decease collagen 

solution jet concentration.  At higher humidity, solvent evaporation is slower due to the 

higher water vapor content in the air, so the solution jet remains viscous longer. During 

which time the electrostatic force allows fiber stretching and thinning. As a result, the 

solid fiber formation will take longer with smaller fiber diameter. At low humidity, 

solvent evaporation rate increases, leaves jet stream a shorter whipping and thinning time, 

results a much faster formation of the dry fibers with larger fiber diameter.  

4.2 Other factors affecting fiber morphology and size  

Electrospinning is a complicate process involving several parameters. Viscosity of the 

polymer solution must be high enough to allow polymer entanglement to form fibers 



www.manaraa.com

49 

 

rather than broken beads, but low enough to allow the solution to be extruded as a jet 

from the spinneret. Thus, only a narrow range of concentration allows the formation of 

electrospun fibers. Reducing solution concentration to 20wt% collagen in 40 v/v% acetic 

acid, electrospun fibers can still be formed (Figure 4.5). At low humidity levels (20 – 25 

%), flat ribbon fibers formed due to high solvent evaporation rate, fast outer layer 

formation, and collapse of the fiber center (arrows in Figure 4.5 a). Increasing the 

humidity allows formation of cylindrical free-standing fibers, however, at higher 

humidity levels, signs of fiber fusion due to retarded solvent evaporation was observed 

(arrows in Figure 4.5 c and f).  

 

Figure 4.5. SEM images of electrospun collagen fibers spun with 20 wt% collagen 

solution at a flow rate of 0.1 mL/hr in relative humidity (RH) levels of (a) 20%, (b) 

25%, (c) 30%, (d) 35%, (e) 40%, (f) 45%. Scale bar: 2µm. 

This solvent retardation on fiber fusion is even more noticeable with increased solution 

flow rate. By increasing solution flow rate from 0.1 mL/hr to 0.15 mL/hr, fewer flat 

ribbon fibers were seen at low humidity levels (Figure 4.6 a), but fiber fusion was 

observed at 30 % (Figure 4.6 c arrows). Still higher flow rates resulted in more 
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cylindrical fibers, larger average fiber size and more fiber fusion.

 

 Figure 4.6. SEM images of electrospun collagen fibers spun with 20 wt% collagen 

solution at a flow rate of 0.15 mL/hr in relative humidity (RH) levels of (a) 20%, (b) 

25%, (c) 30%, (d) 35%, (e) 40%, (f) 45%. Scale bar: 2µm.  

By lowering the solution viscosity through reducing collagen concentration, beaded 

fibers with a mixture of fibers and beads were obtained (Figure 4.7a). Further lowering 

the solution concentration to 15 wt% resulted in insufficient inter-chain entanglements to 

form electrospun fibers. Rather, as spun fibers broke up into droplets due to the effects of 

surface tension. Therefore, with a 10 wt% collagen in 40 v/v% acetic acid solution 

collagen beads were electrosprayed on the collector.  Figure 4.7b shows some of the 

beads formed through the process. These beads were mostly fused together due to 

incomplete drying process.  
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Figure 4.7. SEM micrograph of (a) beaded fibers with 15 wt% collagen solution and 

(b) electrosprayed beads with 10 wt% collagen solution.  
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4.3 Fiber alignment to mimic tissue structure  

Aligned collagen fibers were electrospun with a rotating mandrel at 7400 rpm, a flow rate 

of 0.15 mL/hr, and an applied voltage of 20 kV. The needle-collector separation distance 

was 18 cm. The spinning mandrel collector electrode had a diameter of 4.5 cm and all 

fibers were collected at 30 %. SEM images of one random and one aligned samples are 

shown in Figure 4.8. Frequency plot of the 2D FFT spectrum were generated to measure 

the relative scaffold anisotropy and identify the principle axis of fiber orientation (Figure 

4.8c and d).   

 

Figure 4.8. (a) random electrospun collagen fibers; (b) aligned electrospun collagen 

fibers; frequency plot of 2D FFT of (c) random fibers, (d) aligned fibers.  

The 2D FFT plot generated from random electrospun collagen fibers shows several peaks 

(Figure 4.8 a and c). These peaks are caused by a greater disorder or a high degree of 
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randomness, representing there is presence of fiber aligned in all direction axis. In 

comparison, the fibers spun with rotating mandrel generated highly aligned fibers as 

indicated by the 2D FFT frequency plot shows one single narrow peak. This one peak 

represents the major axis of fiber alignment. The alignment peak is narrow and sharply 

delineated with minimum peak shoulders, indicating nearly uniform fiber alignment.  

To demonstrate that the organized structure of electrospun collagen fibers can mimic the 

natural tissue, two layers of orthogonally aligned fibers were compared to natural 

tympanic membrane [218]. SEM micrographs of both structures were taken and analyzed 

via 2D FFT. The resulting plots give a good comparison of the degree of alignment as 

well as the relative position of the two layers in the double layer structure (Figure 4.9). 

Both the tympanic membrane (Figure 4.9 a) and the electrospun scaffold (Figure 4.9 b) 

possess two distinct peaks offset by 90°, which indicates the orthogonal relationship 

between the two layers. The overlap of the two spectra indicated the fiber alignment and 

assemblies mimic the microanatomy of the natural tympanic membrane (Figure 4.9 c).  

Figure 4.9. (a) SEM image of rat tympanic membrane; (b) SEM image of a two-

layer electrospun structure of aligned fibers; (c) frequency FFT plot of fiber 

alignment for (a) and (b) 

4.4 Core-shell fiber fabrication  

To create core-shell structures for possible encapsulation of therapeutic agents (e.g., 

drugs, protein, DNA) coaxial electrospinning was carried out to deliver two polymer 

solutions independently through a coaxial needle. The process setup and optimization for 

core-shell preparation has been studied previously [62]. The optimal condition found for 

electrospinning collagen fibers in HFIP was applied for collagen solution using acetic 
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acid as solvent system. The core solution was polyethylene glycol (PEG) in 85% ethanol 

as described previously.  

The resulting fibers were imaged using bright field transmission electron microscope 

(TEM) (Figure 4.10 a and b), core-shell structure of the collagen fibers can be seen in 

Figure 4.10 a and b with a darker core and lighter shell. From previous studies, structures 

with a darker core and lighter shell indicates a well-defined core-shell structure [62]. 

Figure 4.10 a shows a consistent core and shell diameter along the fiber, indicating a 

uniform distribution of the core-shell material throughout the spinning process. The sharp 

boundary between the core and shell structure suggests minimum back mixing occurred 

between the miscible core and shell solutions.  

The fibers were stabilized by crosslinking with genipin as the crosslinking agent 

following an established procedure we developed [62]. Following that, fibers were 

immersed in water for one day to leach out the core material. The structure of the 

resulting hollow fibers was imaged using bright field TEM as shown in Figure 4.10 c and 

d. Due to the removal of core material, the electron beams disintegrate the polymers at 60 

kV during TEM imaging and the fiber cross-section can be seen in the TEM images.  
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Figure 4.10. TEM images of coaxial electrospun PEG-collagen fibers. (a) and (b) 

core-shell structure with lighter shell indicating collagen and darker core indicating 

PEG with collagen; (c) and (d) hollow structure with collagen shell only.  

Using electrospinning, collagen fibers with size, morphology and organization mimicking 

that of the native ECM can be obtained. However, recent studies have shown that 

collagen does not retain its native structure after the vigorous electrospinning process and 

becomes water soluble [6], [14], [25], [82].  Subsequent crosslinking methods have been 

introduced to stabilize the collagen to control its degradation rate and enhance its 

stability.  
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4.5 Effect of crosslinking on fiber size, morphology 
and stability  

As the electrospun collagen fibers are not stable in aqueous environment, fibers need to 

be stabilized for further applications. Figure 4.11 shows as spun fiber morphology before 

and after fibers were immersed in water for 5 minutes. Before water immersion, as spun 

fibers are cylindrical and free-standing; after these fibers are exposed to water, they lost 

their fibrous morphology and gelled into a film.  

 

Figure 4.11. (a) as spun collagen fibers; (b) fibers exposed to water and gelled into 

film.  

4.5.1 UV-riboflavin  

In this study, UV crosslinking of electrospun collagen fibers was carried out with 

riboflavin incorporated as a photoinitiator to promote free radical generation and improve 

crosslinking. Riboflavin incorporated collagen solution was electrospun into free standing 

cylindrical fibers as shown in Figure 4.12 a. However, a closer look at the fibers reveals 

features with irregular crystal shapes attributed to undissolved riboflavin particles 

dispersed in the collagen solution and spun with fiber as a suspension (arrows in Figure 

4.12 b and c). As riboflavin is only active in soluble form, to maintain a sufficient amount 

of soluble riboflavin to produce free radicals for crosslinking, ethanol was used as a 

solvent system to dissolve the riboflavin while maintaining the fibrous morphology of 

electrospun collagen fibers.   
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Several crosslinking durations from 30 min to 600 min at 30 mins intervals were used to 

determine the optimum exposure time for UV crosslinking. The desirable crosslinking 

time should be long enough to allow the formation of free radicals which initiate 

chemical reactions, while short enough to avoid prolonged exposures that might resulting 

in an increasing probability of collagen being denatured.  

As pure ethanol would absorb moisture from the air water content over time, without 

carrying out the experiment in a drybox, prolonged exposure resulted in fibers sticking to 

each other after crosslinking (Figure 4.12 c). Although molecular sieves were later added 

to the ethanol to absorb the water molecules, the fibers after crosslinking still show 

similar structure with fibers sticking to each other. Since the overall fibrous morphology 

was maintained after the crosslinking, these fibers were used to determine crosslinking 

efficiency.  

Based on water stability tests, it was found that the optimum UV crosslinking time is 

around 180 mins. Compared to other samples for which most of the fibrous features 

vanished after exposure to water, fibers crosslinked by 180 min of UV illumination 

remained relatively stable. SEM imaging of the fibers after exposure to water for one 

hour (Figure 4.12 d-f) show that the overall fibrous features were partially retained. 

However, the fibers are no longer cylindrical nor free standing, but were flattened with a 

porous structure.  
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Figure 4.12. (a) riboflavin encapsulated electrospun collagen fibers; (b) pieces of 

riboflavin encapsulated inside the fiber showing a larger fiber size; (c) fibers 

crosslinked in pure ethanol for 60 mins; (d)-(f) UV crosslinked fibers after 

immersed in water for one hour.  

4.5.2 Green light and Rose Bengal  

Green light was used in combination with Rose Bengal to investigate the crosslinking 

efficiency and fiber stability. As dissolved Rose Bengal has a characteristic color that acts 

as a shielding layer for light penetration [162], to improve the crosslinking efficiency, 

Rose Bengal was incorporated into the solution above the solubility limit (0.1 w/v%). 

The excess amount Rose Bengal ensures the crosslinking proceed with saturated soluble 

Rose Bengal in the solvent system.  

Figure 4.13 a and b show SEM micrographs of electrospun collagen fibers before and 

after incorporating Rose Bengal particles into the fibers. Arrow in Figure 4.13 b shows a 

Rose Bengal particle encapsulated in a fiber. To dissolve the Rose Bengal particles in the 

fibers at a slow rate while maintaining the fibrous structure and morphology of the 

electrospun fibers, pure ethanol and pure isopropanol were used as solvent systems for 

LED crosslinking. Rose Bengal incorporated fibers were immersed in either pure ethanol 
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or isopropanol and exposed to green light illumination for various durations ranging from 

10 mins to 3 days, with 22 hours crosslinking shown to result most stable fibers. Figure 

4.13 c to e show SEM images of Rose Bengal incorporated electrospun collagen fibers 

crosslinked in ethanol solution for 22 hours followed by soaking in water for 24 hours. 

As can be seen, the fiber diameter increased, while became porous with a rough surface 

morphology. The porosity and roughness can be attributed to the dissolution and 

degradation of the fibers during the 24 hours exposure to water. In contrast, when 

isopropanol was used as the solvent system, the same crosslinking time produced fibers 

that were more stable with a non-porous structure (Figure 4.13 f-i). Although a certain 

degree of roughness was still seen.   

 

Figure 4.13. SEM micrographs of electrospun collagen fibers containing the 

photoinitiator Rose Bengal. (a) – (b) as-spun fibers, some of which show irregular 

shapes indicating encapsulation of Rose Bengal particles. (c) - (e) 24 hours water test 
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for fibers crosslinked in pure ethanol for 22 hours. (f) – (i) 24 hours water test for 

fibers crosslinked in isopropanol for 22 hours.  

The collagen fibers crosslinked using Rose Bengal in isopropanol were further tested for 

stability by immersing the fibers in water for 7 days. Figure 4.14 shows the fibers after 7 

days water exposure. As can be seen, the overall scaffold structure was maintained, but 

the fibrous morphology and porosity was lost with all layers of fibers collapsed into a flat 

mat.  

 

Figure 4.14.  SEM micrographs of Rose Bengal incorporated electrospun collagen 

fibers crosslinked in pure isopropanol for 22 hours and immersed in water for 7 

days. 

4.5.3 Ion beam implantation 

It has been demonstrated by previous studies that ion beam treatment has the potential to 

selectively induce intrinsic modifications to the mechanical and chemical properties of 

electrospun fibrous scaffolds [79], [195]. Following procedures described previously, we 

converted a high energy mono-energetic ion beam generated from a conventional high 

energy ion beam into a low, poly-energetic beam using a tantalum foil as an energy 

diffuser. 
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The energy of the beam is reduced and its distribution is broadened through the 

collision/straggling process of the ions with the TA atoms in the foil, providing for a 

widened implantation zone. At the same time, because of the wider distribution of the 

ions, the energy related damage was minimized to the near surface. 

As the electrospun collagen fibers are protein based and more fragile than other 

polymers, two lower ion dosage levels were used to implant the fibers. Since previous 

studies showed nitrogen implantation introduced nitrogen based functional groups, which 

are presented at the sites for cell adhesion, thus nitrogen ion was used to impart fiber 

stability. The conditions used in preparing the samples are as indicated in Table 4.1.   

Table 4.1. Implantation conditions for three samples  

 Condition 1 Condition 2 Condition 3 

Dosage 8 × 1015ions / cm
2
 4 × 1015ions / cm

2
 4 × 1015ions / cm

2
 

Current 800nA – 900 nA 800nA – 900 nA 200 – 300 nA 

Cooling method Air cool Liquid nitrogen Liquid nitrogen 

Implantation time ~ 6 hours ~2.5 hours ~ 8 hours 

Aperture 3 × 3 𝑐𝑚2 3 × 3 𝑐𝑚2 1 × 1 𝑐𝑚2 
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Table 4.2. Average fiber diameter and standard deviation before and after ion 

treatment. 

Sample Average fiber 

diameter (nm) 

Standard deviation 

(nm) 

As spun 228.8 38.0 

Condition 1 104.9 26.4 

Condition 2 145.9 37.3 

Condition 3 118.9 32.6 

 

As indicated in Table 4.2, the average fiber diameter before treatment was around 230 

nm. Treatment with a high ion dosage  (8 × 1015 ions/cm2), average fiber diameter 

reduced by half to 105 nm. A lower dosage (4 × 1015ions/cm2) resulted in a lower 

degree of fiber diameter reduction, with a final average fiber diameter of 145 nm. 

Surprisingly, reduced current did not further decrease fiber reduction, but produced fibers 

with an average diameter of 120 nm. Based on the fiber size, condition 2 resulted in 

fibers with the least size reduction and carbonization. The reduction of average fiber 

diameter after ion implantation is consistent with previous studies using the same 

treatment performed on other materials [79].  

The diameter distribution of the electrospun collagen samples was determined from 120 

randomly chosen fibers on four SEM images captured randomly on the sample. The SEM 

micrographs and histograms along with best-fit normal distributions are shown in Figure 

4.15.  

From SEM images, condition 3 with a lower dosage delivered at a lower current over a 

smaller aperture resulted in fiber fusion, while samples with larger aperture (condition 1 
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and 2) maintained free standing fibers. Comparing conditions 1 and 2, higher dosage 

resulted in smaller fibers with more fragile fiber fragments. The broken ends of fibers can 

be seen in Figure 4.15 d arrow.  

 

Figure 4.15. SEM micrographs of electrospun collagen scaffolds (a) as-spun, (b) ion 

implantation with 4 x 1015 ions/cm2, 1 x 1 cm2 aperture and 200nA current, (c) ion 

implantation with 4 x 1015 ions/cm2, 3 x 3 cm2 aperture and 900nA current, (d) ion 

implantation with 8 x 1015 ions/cm2, 3 x 3 cm2 aperture and 900nA current; (e)-(h) 

histograms of fiber diameter distribution for samples in (a)-(d) with best-fit normal 

distributions.  

The fibers crosslinked with condition 1 and 2 were further tested for stability by 

immersing the fibers in water for 7 days. Figure 4.16 shows the fibers after 7 days water 

exposure. Not only the overall scaffold structure was maintained, there was no sign of 

fiber swelling or change of fiber morphology. For the condition 1, average fiber diameter 

reduced to 96.1 ± 11.2 nm, while for the lower dosage implantation condition 2, the 

average fiber diameter reduced to 127.8 ± 18.2 nm.    
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Figure 4.16. SEM micrographs of N+ implanted eletrospun collagen fibers immersed 

in water for 7 days. (a) Implantation with 4 x 1015 ions/cm2 (b) implantation with 8 x 

1015 ions/cm2 

4.5.3.1 Effect of ion implantation on chemical structure  

Previous work in our group indicated that ion treatment using active N+ species can 

induce chemical modifications that is beneficial for cell attachment. To study the change 

of chemical structure, XPS was used to analyze the freeze dried collagen, as spun 

collagen, and nitrogen ion implanted electrospun collagen scaffolds.  

XPS survey, C 1s, N 1s and O 1s high resolution spectra were used to examine chemical 

modification and analyze surface functionalization. The XPS data acquired establish the 

XPS elemental composition and intensities for the samples. And the percentage fraction 

of each element is illustrated in Table 4.3.  
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Table 4.3. Amount of oxygen, nitrogen and carbon present  

 O N C 

Freeze dried collagen 16.1 11.6 72.3 

4E15 film 9.6 9.6 79.4 

As spun fiber 17.2 17.6 65.4 

4E15 fiber 13.0 11.2 73.9 

8E15 fiber 11.1 5.4 78.2 

From the survey spectra (Figure 4.17 to Figure 4.21), the samples provided very similar 

elemental composition with the highest contents of carbon, oxygen, nitrogen. Although 

different protein types may vary in composition to a greater extent and the presence of 

carbon can be attributed to organic molecules and is ubiquitous and detected on all 

samples, the change in carbon content can reflect the degree of carbonization during ion 

implantation. The nitrogen content indicates the presence of nitrogen containing groups 

that is beneficial for cell adhesion. The freeze-dried type I collagen has a 72.3 % C, 

16.1% O and 11.6% N, while by dissolving the collagen in 40 v/v% acetic acid and 

underwent electrospinning, the as spun collagen fibers has 64.5% C 1s, 17.2 % O and 

17.6% N. We theorized the change of C, O and N relative percentage may be attributed to 

the change of protein folding during protein dissolution and spinning process.  

Two levels ion implantation 4 × 1015𝑖𝑜𝑛𝑠/𝑐𝑚2 (4E15) and 8 × 1015𝑖𝑜𝑛𝑠/𝑐𝑚2 (8E15) 

were carried out on electrospun collagen fibers to stabilize and impart nitrogen containing 

groups to the scaffold surface. The survey spectra (Figure 4.20 and Figure 4.21) indicated 

an increase of carbon content and decrease on nitrogen content with increasing ion 

dosage. The higher levels of carbon and lower levels of nitrogen measured indicating an 

increase in carbonization and decrease in protein content with increase ion implantation.  

By depositing the same dosage ions (4 × 1015𝑖𝑜𝑛𝑠/𝑐𝑚2) onto both collagen film and 

electrospun collagen fibers, collagen film exhibited higher C 1s and lower N 1s levels 
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compared to collagen fibers (Figure 4.18 vs. Figure 4.20). The lower C 1s level of 

collagen fibers can be attributed to the higher porosity level of collagen fibers allowing 

faster heat dissipation with higher surface area per unit volume.  

 

Figure 4.17. Full XPS survey on freeze dried type I collagen.   
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Figure 4.18. Full XPS survey spectrum on 4 x 1015 ions/cm2 N+ implanted collagen 

film  

 

Figure 4.19. Full XPS survey spectrum of as spun collagen fibers 

Surface Science W estern

As Spun

C
 1

s

N
 1

s

O
 K

L
L

O
 1

s

N
a
 1

s

N
a
 K

L
L

C
l 

2
s

C
l 

2
p

Name

Na 1s

O 1s

N 1s

C 1s

Cl 2p

S 2p

Pos.

1067.65

527.95

396.35

282.25

194.75

161.15

At%

0.4

17.2

17.6

64.5

0.2

0.1

S
 2

s

S
 2

p

x 10
3

10

20

30

40

50

60

70

C
P

S

1000 800 600 400 200 0

Binding Energy (eV)



www.manaraa.com

68 

 

 

Figure 4.20. Full XPS survey spectrum of 4 x 1015 ions/cm2 N+ ion implanted 

electrospun collagen fibers  

 

Figure 4.21. Full XPS survey spectrum of 8 x 1015 ions/cm2 N+ ion implanted 

electrospun collagen fibers 
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The N 1s peaks indicated the presence of the amino acid of the protein. The 

deconvolution of N 1s core level spectra (Figure 4.22 to Figure 4.26) reveals two 

components, centered around 399 and 400eV, characteristic of nitrogen containing amide 

groups and amine groups, respectively. As the starting material is collagen protein with 

presence of amine/amide and carboxy groups, the amine/amide peak are the major 

components.  

Compare to the type I collagen, the as spun fiber resulted a narrower peak with a 

diminish of the deconvoluted peak at 400eV. With ion implantation treatment, all the 

implanted samples have much broader peaks compared to the ones without ion 

implantation (Figure 4.25 and Figure 4.26). The N 1s peak shape and position of 4 x 1015 

ions/cm2 N+ treated fibers were not significantly different from the as spun fiber. Further 

increase the ion dosage to 8 x 1015 ions/cm2 resulted a broader N 1s spectra (Figure 4.26), 

however, the peak intensity at 400eV is as strong as the amine/amide peak. The 

appearance and high intensity of NH+ peak indicated the possible chemical changes 

introduced by high dosage ion implantation. Similar result was observed with 4 x 1015 

ions/cm2 implantation on collagen film (Figure 4.23). Compared to 4 x 1015 ions/cm2 

implanted collagen fiber, same dosage level resulted the comparative peak intensity of 

the 8 x 1015 ions/cm2 implanted collagen fiber (Figure 4.23 vs. Figure 4.26). Further 

suggested without the fibrous porosity, samples went through a higher degree chemical 

changes during ion implantation process.      
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Figure 4.22. High resolution XPS of N 1s for collagen film  

 

Figure 4.23. High resolution XPS of N 1s for collagen film implanted with 4 x 1015 

ions/cm2 N+ 



www.manaraa.com

71 

 

 

Figure 4.24. High resolution XPS of N 1s for as spun collagen fibers 

 

Figure 4.25. High resolution XPS of N 1s for electrospun collagen fibers implanted 

with 4 x 1015 ions/cm2 N+ 
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Figure 4.26. High resolution XPS of N 1s for electrospun collagen fibers implanted 

with 8 x 1015 ions/cm2 N+
 

 XPS analysis of high resolution C 1s (Figure 4.27 to Figure 4.31) revealed four main 

chemical components contributing to the spectra, namely C-C and C-H (hydrocarbon), 

C=O, N-C=O (ketone and aldehyde), C-N, C-NH, C-O (amine/amide and ether), and O-

C=O (carboxylic acid and ester). The photoelectron peaks of C 1s were deconvoluted in 

accordance of the binding energies of C bonds.  Compare the high-resolution C 1s 

spectra, after protein dissolution and electrospinning, the intensity of O-C=O peak 

diminished while the other peaks remain the same (Figure 4.27 vs. Figure 4.28). The O-

C=O peak corresponds to the carboxyl groups in the protein and the nitrogen implanted 

fibers with both low and high dosages show similar pattern as the film (Figure 4.30 and 

Figure 4.31 vs. Figure 4.28). The relative peak intensities are slightly different with 

changing in dosage, but the composition remains the same.  
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Figure 4.27. High resolution XPS of C 1s for collagen film 

 

Figure 4.28. High resolution XPS of C 1s for collagen film implanted with 4 x 1015 

ions/cm2 N+ 
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Figure 4.29. High resolution XPS of C 1s for electrospun collagen fibers 

 

Figure 4.30. High resolution XPS of C 1s for collagen fibers implanted with 4 x 1015 

ions/cm2 N+ 
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Figure 4.31. High resolution XPS of C 1s for collagen fibers implanted with 8 x 1015 

ions/cm2 N+  

The high resolution O 1s shows similar results as C 1s spectrum (Figure 4.32 to Figure 

4.36), using 40v/v% acetic acid as solvent, O-C=O peak diminished Figure 4.33 vs. 

Figure 4.32). Low dosage nitrogen implantation resulted very similar spectra on 

implanted collagen film, implanted collagen fibers and as spun collagen fiber with small 

C=O, O-C=O peak and stronger O=C-N peak (Figure 4.33 to Figure 4.35). Higher dosage 

not only resulted in the change of composition of reappearance of O-C=O peak, along 

with the emerge of new peak, we hypothesize the emerge of the peak is an indication of 

high dosage implantation changed chemical composition of collagen fibers (Figure 4.36).   
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Figure 4.32. High resolution XPS of O 1s for collagen film 

 

Figure 4.33. High resolution XPS of O 1s for collagen film implanted with 4 x 1015 

ions/cm2 N+ 
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Figure 4.34. High resolution XPS of O 1s for electrospun collagen fibers 

 

Figure 4.35. High resolution XPS of O 1s for electrospun collagen fibers implanted 

with 4 x 1015 ions/cm2 N+  
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Figure 4.36. High resolution XPS of O 1s for electrospun collagen fibers implanted 

with 8 x 1015 ions/cm2 N+ 

4.6 Mechanical properties of fibers  

4.6.1 Vacuum dried electrospun collagen fibers 

As spun collagen type I fibers were collected on trenched silicon wafers. These fibers had 

a uniform appearance and were randomly oriented on the surface (Figure 4.37).  

Topographic images of the fibers were obtained using the AFM, and the fiber diameters 

were determined by the height profiles of each fiber.  The average fiber diameter 

determined by AFM topography profile was 158.2 ± 43.2 nm for as spun collagen fibers 

fabricated with 25 wt% solution in acetic acid.   
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Figure 4.37. SEM image of electrospun collagen type I fibers on trenched silicon 

wafers. The electrospun fibers are randomly oriented on the surface.  

 

Figure 4.38. Plot of Young’s modulus as a function of fiber diameter for as spun 

electrospun collagen fibers (half blue circles) and vacuum dried as spun fibers 

(black squares).  
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Figure 4.38 shows the Young’s modulus of as spun electrospun collagen fibers of sizes 

ranging from 50 nm to 260 nm (half blue circles) as determined by AFM measurements 

analyzed using the Euler-Bernoulli model. The modulus ranged from 1 GPa to 58 GPa 

with a slight increase in modulus as fiber size decreases below 200 nm. This trend is 

more prominent with vacuum dried fibers (black squares). Similar observations of an 

increase in modulus with decreasing diameter have been reported for studies for other 

polymer fibers [183], [197], [200], [214], [219], [220].  

As both fiber collection and mechanical testing were carried out in 35 %, it is possible 

that the remaining solvent residue in the fibers may affect their mechanical properties. To 

test this, the fibers were placed under high vacuum (~8 mtorr) for more than 24 hours. 

The fibers tested after vacuum drying ranged in diameter from 100 nm to 250 nm. The 

modulus ranged from 600 MPa to 209 GPa with a drastic increase below 200 nm (Figure 

4.38, black squares).  
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4.6.2 Green light crosslinking  

 

Figure 4.39. Plot of Young’s modulus of electrospun Rose Bengal incorporated 

collagen fibers 

Figure 4.39 shows the Young’s modulus of fibers containing the photoinitiator Rose 

Bengal. The Rose Bengal was incorporated at high concentration to ensure abundant 

photoinitiator within the system during crosslinking. The crosslinking reaction is only 

active when the photoinitiator is in its soluble state, thus by maintaining abundant 

photoinitiator within the system, the dissolved photoinitiator would prolong the 

photochemical crosslinking reaction. 

The incorporation of photoinitiator resulted in an increase in fiber size to a range of 240 

to 640 nm, while the average Young’s modulus was reduced to a range between 75 MPa 

and 22 GPa. Again an increase in modulus with decreasing diameter was observed, 

though the onset of size dependence was shifted to ~ 400 nm. A comparison between 
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fibers incorporating Rose Bengal and freeze dried as spun fibers shows the radical 

increase of fiber diameter and drastic decrease of fiber elasticity (Figure 4.40). 

 

Figure 4.40. Plot of Young’s modulus of collagen fibers incorporating photoinitiator 

(red triangles) and vacuum dried as spun fibers (black disks).  

After photochemical crosslinking with green light, the photoinitiator has been consumed 

for photochemical reaction and the fiber size reduced to 110 nm and 270 nm. The 

Young’s modulus then ranged from 600 MPa to 9 GPa, with an average of around 2.1 

GPa.  Despite the fact that the fiber size reduced after crosslinking, there is no significant 

change in fiber elasticity before and after light crosslinking (Figure 4.41).  The average 

Young’s modulus of fibers with Rose Bengal before and after photochemical crosslinking 

are 2.3 ± 4.8 GPa and 2.1 ± 2.3 GPa, respectively.  
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Figure 4.41. Plot of Young’s modulus of Rose Bengal incorporated (red triangle) 

and green light crosslinked (blue triangle) collagen fibers.  

4.6.3 Genipin crosslinked electrospun collagen fibers  

As genipin crosslinking was carried out in a solvent system containing 3% water, 

electrospun collagen fibers absorbed water and swelled during crosslinking. As show in 

Figure 4.42, the fiber size spanned from 70 nm to 1000 nm. This swelling has been 

reported in previous work on genipin crosslinked electrospun collagen fibers [89], [129].  

The Young’s modulus of genipin crosslinked fibers show a size dependence for fibers 

with diameters smaller than 200 nm with fiber elasticity ranging from 5 MPa to 165 GPa.  

Genipin crosslinked fibers have a Young’s modulus very similar to as spun collagen 

fibers (Figure 4.42), with a very similar overall trend.  
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Figure 4.42. Plot of Young’s modulus as a function of fiber diameter for genipin-

crosslinked collagen fibers (purple circles) and as spun electrospun collagen fibers 

(black dots). 

4.6.4 Ion implantation 

Two ion dosage levels were used to treat as spun electrospun collagen fibers, 4 ×

1015ions/cm2 (ion4 AA) and 8 × 1015ions/cm2 (ion8 AA). As indicated in the 

previous section, both treatments resulted in fiber size reduction, size effects in Young’s 

moduli can be observed in both ion treatments (Figure 4.43a and b). The onset for 

increases in modulus with reduction of fiber diameter is around 170 nm for both cases. 

By comparing the results from the two ion implantation levels, there is no definitive 

difference between the two dosages (Figure 4.43c). Unlike other fiber stabilization 

treatments where fiber mechanical properties changed after the treatments, there is no 

obvious change in Young’s modulus after ion implantation for either dosage levels 
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(Figure 4.43d). The maintenance of fiber properties after ion treatment can be attributed 

to the fact that ion implantation is the only physical stabilization treatment that does not 

introduce or involve other chemicals. The physical treatment allows the preservation of 

native fiber structures and properties, and produces the fibers most closely resemble the 

as spun fiber properties.  

 

 

Figure 4.43. Plots of Young’s modulus as a function of fiber diameter for (a) 

nitrogen treatment with dosage of 4 x 1015 ions/cm2; (b) nitrogen treatment with 

dosage of 8 x 1015 ions/cm2; (c) overlay of the two ion implantation dosages; (d) 

comparison between ion implanted fibers and as spun collagen fibers.  
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4.6.5 Change of solvent system 

Instead of using 40 v/v% acetic acid as the solvent system for as spun collagen fibers, 

HFIP was used for comparison. Nitrogen ion treatments with dosage level  4 ×

1015ions/cm2 (ion4) and 8 × 1015ions/cm2 (ion8) were applied to the prepared 

samples. As shown in Figure 4.44a, no difference is evident in the mechanical properties 

of the resulting fibers. The trends are very similar to those for fibers spun in acetic acid. 

To further explore the effects of the two different solvent systems, the mechanical 

properties were compared separately with each ion dosage.  It is evident from Figure 4.44 

b and c, that the Young’s modulus for the two solvent systems extremely similar, 

although fibers spun with acetic acid system have a more pronounced size effect at low 

diameters. Presumably the high volatilities of both acetic acid and HFIP allow fast and 

complete solvent evaporation during the electrospinning process.  
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Figure 4.44. Plots of Young’s modulus of (a) collagen fibers spun with HFIP solvent 

system and implanted with different dosage of nitrogen ions; (b) electrospun 

collagen fibers prepared with HFIP and acetic acid and implanted with 4 x 1015 

ions/cm2 nitrogen; (c) electrospun collagen fibers prepared with HFIP and acetic 

acid and implanted with 8 x 1015 ions/cm2 nitrogen. 
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4.7 Cell compatibility of crosslinked collagen fibers  

Stabilized electrospun collagen scaffolds can provide the correct structure, geometry, 

surface chemistry and mechanical properties which mimic that of the native ECM of 

most tissues. However, cell compatibility of these scaffolds still have to be assessed to 

determine the performance of the crosslinked fibers.  

Human fetal lung (IMR-90) cells were used to determine the aqueous stability of 

crosslinked electrospun collagen fibers for cell adhesion and proliferation. Nitrogen ion 

treated collagen film (film) and collagen fibers (4E15) were used for evaluating the 

effects of substrate morphology on cell morphology; aligned (aligned) and random 

collagen fibers (4E15) were compared to observe the change of cell morphology with 

substrate organization (i.e. fiber alignment); high and low dosage nitrogen ion treatments 

(8E15 vs. 4E15) were used to identify the effect of ion dosage on cell behavior; 

photochemical crosslinked and genipin crosslinked electrospun collagen fibers were also 

used to provide insights in crosslinking methods on cell growth.  

Optical images on IMR 90 after 24 hours of cell seeding on culture plates indicate 

healthy fibroblasts exhibited extended and elongated form to maximize contact area with 

substrate (Figure 4.45). 
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Figure 4.45 Optical image (brightfield) of IMR-90 on culture plate after 24 hours 

seeding, initial seeding density: 20,000 cells / well.  

After seeding the cells on all crosslinked samples, IMR-90 showed good adhesion and 

spreading on crosslinked film and fibers after 24 hours (Figure 4.46). For the cells on low 

dosage nitrogen implanted film and random fibers, the cells filopodia spread and 

extended in all directions, while the cells were stretched into bipolar morphology on other 

samples (Figure 4.46).  

10µm 
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Figure 4.46. SEM images of all crosslinked samples after 24 hours of cell seeding. 

(All have the scale bar of 20 µm) 

Low ion implanted film was used as a positive control to demonstrate the difference in 

cell morphology when encountering with film versus fibers.  The low dosage implanted 

film showed round cell shape with irregular protrusions in all directions. For all other 

samples with fibers presented, cells had filopodia protrude from the cells along the 

direction of the contacted fibers (Figure 4.47 c and d). To form anchorage with substrate, 

cell filopodia extended towards the fibers until it makes contact with one single fiber, 

then adhere to the fibers by pulling on them (Figure 4.47a). With higher fiber density, 

once the filopodia form contact with fiber, they bend and align with the contacted fiber 

(Figure 4.47c). In some cases, the filopodia would extend to the layer underneath the 

surface layer and entangled with fiber network (Figure 4.47d). On some samples, the 

cells infiltrated underneath the surface layer of the sample and grow on the second layer 

(Figure 4.47b). The layer of fibers lying on top of the cells and the fiber network stay 

intact around the cells. The length and degree of extension of filopodia differs in each 

sample. In some samples, filopodia adhere and aligned tightly along the fibers to form 

long lasting adhesions until it reaches and form contact with adjacent cell filopodia 

(Figure 4.48a,b). The more than 100 µm long filopodia indicates the active interaction 

20µm 
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between filopodia and the fibers, suggests a highly active role of filopodia in mediating 

initial adhesion events and in exploring their environment.  

 

 

Figure 4.47. SEM images of filopodia extension on crosslinked electrospun collagen. 

(a) filopodia extended from the cell to reach to genipin crosslinked electrospun 

collagen fibers. (b) additional cells grow on the bottom of the fiber layer. (c) 

filopodia reach out, anchor and align with fiber direction. (d) filopodia extended 

and reached to entangle the fibers underneath the top layer.  
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Figure 4.48. SEM images of filopodia extension on LED crosslinked electrospun 

collagen fibers. (a) long filopodia extension with length of more than 100 µm. (b) 

filopodia extension and entanglements between cells.  

The stellar morphology of all the samples after day 1, day 4 and day 7 can be observed in 

Figure 4.49, compared to ion implanted films, crosslinked fibers resulted cells elongated 

into bipolar morphology.  All the crosslinked samples have cells with bipolar 

morphology, while the cells are aligned parallel to the orientation of the aligned fibers.  
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Figure 4.49. SEM images of crosslinked collagen samples after 1, 4 and 7 days of 

IMR90 culture. (All have the scale bar of 100 µm) 
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To further observe the role of the surface topography on the interaction of cells with the 

fibrous scaffold, cell skeleton and nuclei were stained and imaged using fluorescence 

microscopy. Figure 4.50 shows by using different excitation and emission wavelength, 

the cell nuclei and cell skeleton can be clearly distinguished. After 4 days of culture, 

IMR90 had the bipolar elongation parallel to the orientation of the aligned fibers.  

 

Figure 4.50. Fluorescence images of IMR 90 cultured on aligned crosslinked 

electrospun collagen nanofiber; a: cell nucleus; b: filamentous actin; c:  overlaid 

image 

As a comparison, Figure 4.51 shows the bipolar elongation of cells on aligned fibers 

while random fibers resulted cells extended in all direction with stellar morphology.  

 

Figure 4.51. Fluorescence image of IMR 90 cultured on aligned vs. random collagen 

fibers.  
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5 Discussion  

5.1 Tissue engineering   

Currently, the most intensively researched approach for the development of medical 

devices is the tissue engineering / regeneration approach [1], [44], [51], [221]–[225]. This 

approach attempts to create implants to replace / repair the diseased tissue / organ by 

making the use of biodegradable materials as template or substrate [19], [20], [146], 

[222]. The implant is either populated with appropriate types of cells before implantation 

or would attract local cells after implantation with the help with bioactive molecules such 

as growth factors [225], [226]. As these cells gradually lay down their own extracellular 

matrix (ECM) after implantation, the substrate material should be degraded and replaced 

by living tissue /organ [2], [3].  

It is known that extracellular matrix (ECM) provides the structural supports for cell 

adhesion and cells respond to the structural, chemical, physical and mechanicals cues 

presented in the environment (i.e. ECM) [18], [30], [35], [168], [183], [227].  The 

importance of ECM in cell behavior regulation inspired researchers to develop 

biomaterial structures that closely match the target diseased tissue / organ ECM in terms 

of structure, geometry and properties. The ECM is composed of complex chemically and 

physically crosslinked network of protein fibers and serves to mechanically support cells 

in 3-dimensions and provide biochemical signals for cellular activity regulation [34], 

[39], [39], [51], [62], [75], [228]. To create scaffolds which serve as “synthetic ECM” 

that replicate the structural, chemical, physical and mechanical aspects of the natural 

ECM, collagen, the most abundant structural proteins in mammals have been widely used 

for tissue regeneration applications [11], [13], [228]–[230], [14], [62], [91], [135], [144], 

[145], [150], [172]. Among the different collagen types, collagen type I, predominantly 

localized in the skin, tendon, cornea, and bone, is the most abundant in the body and the 

most widely studied [6], [13], [16], [149], [150], [213], [227], [231]. Amongst the various 

scaffolding techniques, electrospinning is an outstanding method that is capable of 

producing non-woven fibrous structure with dimensional constituents similar to those of 

ECM fibrils. Electrospinning allows fabrication of fibrous scaffolds with controlled 

geometry and pore dimensions that resembles the fibrillar feature of the ECM. These 
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fibers provide structural support and mechanical integrity to tissues as well as locations 

for cell adhesion and can potentially significantly affect cellular behavior [66]. The 

possible control of fiber arrangement and architecture is also important in affecting cell 

attachment, proliferation and differentiation [39], [136], [173], [196].  

In this work, we used the electrospinning technique to fabricate 3D collagen scaffold with 

either random or aligned fibers. The as spun collagen fibrous scaffold was not stable in 

aqueous environment, chemical, photochemical and physical crosslinking were applied to 

improve fibers aqueous stability. The as spun and treated fibers were subjected to 

mechanical testing using atomic force microscope to determine the elasticity of 

individual single fiber. Human fetal lung (IMR-90) cells were used to determine cell 

compatibility of the scaffolds.  

5.2 Preparation of electrospun collagen fibers  

The fibrous proteins which provides both structural and adhesive functions in the ECM 

are approximately 50 – 500 in diameter [18], [227]. Thus, producing nanometer sized 

fibers is particularly suitable for tissue regeneration applications due to their high surface 

area to volume ratio and interconnected porous network for cell attachment and 

infiltration [34], [228]. Fibrous scaffolds can be fabricated with controlled alignment to 

closely mimic the organized structure of the ECM [34], [39], [113]–[115], [122], [232], 

[233]. The common approaches used to fabricate fibrous scaffolds include wet spinning, 

melt spinning, gel spinning, electroblowing, microfluidic device extrusion, template 

synthesis, drawing, phase-separation, and force spinning [3], [44], [61], [66], [170]. The 

most common method for the production of nanofibers is electrospinning, which is based 

on the effect of electrostatic force on liquids and is adopted for the work described in this 

thesis.   

5.2.1 Effect of humidity  

Our goal is to fabricate custom designed fibrous scaffolds for tissue engineering 

applications. We investigated the production of collagen fibers by electrospinning as it is 

biocompatible and possesses good cell adhesion properties. 
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In electrospinning, most of the polymer solution properties and process parameters have 

been well studied, however the environmental parameters including humidity and 

temperature are probably the ones that have been lesser studied. Based on earlier work by 

ourselves and others, we fabricated collagen type I fibers by electrospinning and studied 

the effect of environmental humidity on the resulting fiber diameter and fiber 

morphology. 

We used an aqueous acetic acid solvent system for the preparation of the collagen 

solution for electrospinning as this system has been reported to allow collagen 

regeneration that is the least denatured compared to the more popular choice of HFIP. A 

collagen type I solution of 25 wt % in an aqueous acetic solution of 40 v/v% acetic 

acid/water was used to produce electrospun collagen fibers over a humidity range of 20 ± 

5 to 55 ±5 %. Similarly, 5 wt% collagen type I solution in HFIP was used to produce 

electrospun collagen fibers over a humidity range of 25 ± 5 to 40 ±5 %. 

As show in Figure 4.1 and Figure 4.3, under the electrospinning conditions used, 

diameter of the fibers produced falls within the range of 150 to 700 nm. The effect of 

humidity on fiber diameter follows a trend such that the diameter decreases 

monotonically with increasing humidity for both solvent systems (Figure 4.2 and Figure 

4.4). These results illustrate the importance of taking the environmental parameters such 

as humidity into consideration to ensure experimental reproducibility. It also 

demonstrated that humidity is an experimental parameter that can be used to tune the 

diameter of the fibers that is desired for a given tissue engineering application. 

There is no comparable results of humidity effect on electrospun collagen fiber in the 

literature. However, the trend of decreasing fiber diameter with increasing humidity is an 

interesting one and is comparable to that reported for the PEO – water system. This 

correlation could be explained in terms of collagen – acetic acid – water and collagen – 

HFIP - water interaction. Since both acetic acid and HFIP are miscible with water and 

collagen is highly hydrophilic and lyophilized collagen is soluble in acetic acid, an 

increase in environmental humidity of the electrospinning process serves to increase the 

dilution of the collagen solution with water, delaying phase separation (fiber 
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solidification) to allow further stretching of the liquid polymer jet in the electric field 

before reaching the collector electrode thus leading to a decrease in fiber diameter. 

Collagen fiber morphology under various humidities are collected in Figure 4.1, Figure 

4.3, Figure 4.5 and Figure 4.6. Depending on the specific humidity, fiber morphology can 

range from ribbons to cylindrical fibers. The difference in fiber morphology can be 

attributed to the solvent evaporation process at different humidity levels. At low humidity 

level, solvent evaporation rate would be fast, a solid fiber outlayer is formed, while the 

inner core is still a fluid. As the inner layer solvent evaporated diffusively through the 

outlayer, the overall structure collapsed to form the ribbon dog bone shape fibers (Figure 

4.1 a, b, and Figure 4.3 a). While as seen in Figure 4.1 e, f and Figure 4.3 d, at higher 

humidity level, with sufficient time given to allow the solvent to evaporate completely 

before the dry fibers arrive at the collector electrode, cylindrical free standing fibers 

without fusion of overlapping fibers can be obtained. Further increase the humidity level, 

solvent evaporation may be retarded, fibers may stick to each other on the collector 

(Figure 5.1). Thus, the difference in solvent evaporation process determine the 

morphology and size of the obtained fibers. 

 

Figure 5.1. Fibers sticking to collector and with each other 

1 µm 



www.manaraa.com

99 

 

The control of fiber size and morphology via humidity control allows tuning the collagen 

fiber diameter for an intended applications. For example, the average diameter of 

collagen fibril in ECM is between 10 nm to 500nm depending on the target tissue. For 

example, a recent report of the structure of the tympanic membrane indicated this tissue 

is composed of two layers of collagen fibers with diameter in a narrow range centered 

around 30nm. For tympanic membrane repair, it is desirable to have fibers with diameter 

range similar to that of the natural tissue to construct the scaffold for tympanoplasty. Our 

results suggest that the humidity parameter can be used advantageously to tune fiber 

diameters to the appropriate range for target applications such as tympanic membrane 

repair.   

5.2.2 Other parameters  

The increasing interest in using electrospinning in the field of biomedical and tissue 

engineering can be attributed to several factors. Electrospinning is known for its capacity 

to make fibrous and porous structure that are similar to natural ECM, its ability to control 

fiber size from micro- to nano-scale allows creating relatively large surface to volume 

ratio for cell adhesion [44], [49], [50], [66], [70], [84], [108]. Moreover, electrospinning 

is highly versatile in terms of choice of materials, spinning process parameters and 

resulting product qualities [63], [84].  

Following previous study on the effect of humidity on fiber size and morphology, we 

extended our study to other parameters to demonstrate the versatility and controllability 

of electrospinning process.  

In the interest of fiber diameter control, we have also investigated the effect of changing 

collagen solution concentration. The effect of solution concentration on electrospun 

collagen fibers were studied previously with collagen in HFIP. Collagen solution at 

concentrations below 5wt% and above 10wt% are either not electrospinnable to produce 

fibers or too viscous to allow fiber drawing from the tip of the solution droplet [129]. For 

collagen in 40v/v% acetic acid, by decreasing the collagen solution concentration from 

25 wt% to 22 wt % and under similar electrospinning conditions and environmental 

humidity, average fiber diameter is decreased from around 280 nm to 85 nm (Figure 4.2 
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red circle). This result is consistent with other studies on effect of polymer concentration 

on fiber diameters [3], [64], [68], [102], [112]. 

The change in solution concentration directly affect solution viscosities. If the viscosity is 

too low with not enough polymer chain entanglement, the electrospinning process failed 

to be carried out, rather droplets are formed during the process (electrospraying). As 

shown in Figure 4.7, both beads and a mixture of beads and fibers can be formed with 

lower solution concentration. A reduced collagen concentration to 15 wt% resulted in a 

mixture fiber and beads (Figure 4.7 a), while a 10 wt% collagen solution resulted only in 

beads formation (Figure 4.7 b). Although electrospraying process is not the focus of this 

study, these collagen beads can be used as drug delivery vehicles and can either be coated 

or encapsulated for other tissue engineering applications.    

Another parameter we explored was solution flow rate. Two flow rates (0.15 mL and 0.1 

mL) were used to produce fibers at various humidity level (Figure 4.5 vs. Figure 4.6). At 

higher humidity level, both flow rate levels resulted in smooth fibers, while at low 

humidity levels, less flat ribbon fibers were seen for the higher flow rate sample (Figure 

4.5 a vs. Figure 4.6 a).  

The use of HFIP and acetic acid for producing collagen fibers also indicates the solvent 

properties can affect fiber spinning process, attributing to solvent vapor pressure and 

dissolution ability on the choice of material. The standard deviation of average fiber 

diameter in Figure 4.4 is much larger than the values shown in Figure 4.2. This difference 

can be attributed to the choice of solvent used in the spinning process alter the bending 

instability, splaying and splitting of the solution jet [147]. Compare to HFIP, acetic acid 

resulted in a more stable jet, the resultant fibers are more uniform with smaller fiber size 

variation.  

These results demonstrate the versatility and controllability of electrospinning process, 

depends on the target applications, fibers, beads, beaded fibers, ribbon like fibers, 

cylindrical fibers, fibers with ranges of diameters can be achieved by adjusting the 

influential process parameters and choice of solvent systems. These parameters directly 
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affect surface to volume ratio, porosity, and fiber density, which are all important for 

specific target tissue regeneration.  

5.3 Fiber alignment and 2D FFT  

Tissue mechanical properties derive from the heterogeneous composition and anisotropic 

organization of the tissue’s microstructure. For many tissues, including skin, ligaments, 

and arteries, the organization of the collagen fibrils control the tissues mechanical 

functionality. Consequently, in order to produce scaffolds as functional replacement 

tissue, it is necessary to recapitulate the tissue’s organization in the engineered construct. 

In this work, we tried to produce aligned collagen fibers to demonstrate the feasibility of 

fiber alignment to mimic tissue organization.  

Highly aligned collagen fibers were fabricated in this work (Figure 4.8 b). To quantify 

the degree of alignment, 2D FFT function converts the pixels that depict the spatial 

organization of the constituent fibers to mathematically defined frequency domain that 

maps and contains quantitative information concerning the orientation of the objects in 

the image [113]. The frequency plot of the 2D FFT function was used to measure relative 

scaffold anisotropy and identify the principal axis of the fiber orientation. By comparing 

the aligned fiber to random fibers, Figure 4.8 c and d demonstrate the difference between 

the random and aligned fibers. The degree of alignment reflected in the plot with higher 

the intensity and fewer occurrences of the peaks on the plot indicate that the alignment of 

fibers. Figure 4.8c consists of multiple peaks with various intensities while Figure 4.8 d 

display one peak with high intensity indicating one primary align axis exist for the Figure 

4.8b and most fibers aligned along the primary axis.  

To demonstrate the resemblance between aligned collagen fibers and organized tissue, 

the collagen fiber construct was compared to the simplest organized tissue in body, 

tympanic membrane. Tympanic membrane, also called ear drum, is mainly composed of 

two layers orthogonally aligned collagen fibers. As shown in Figure 4.9, by comparing 

the SEM image of a two layer orthogonal collagen fibers (Figure 4.9 b) to tympanic 

membrane (Figure 4.9 a) at microscopic level using 2D FFT, the two images are very 

similar in degree of alignment, relative position of the two layers in the double layer 
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structure and the amplitudes which correspond to the intensity of the fibers. Both the 

tympanic membrane and the electrospun scaffold possessed two distinct peaks offset by 

90◦, indicate the orthogonal relationship between the two layers. The similarity in peak 

amplitude and width suggested fiber density in electrospun collagen sample resembles 

that of the tympanic membrane.  

Recent studies on contact surface guidance revealed that cellular orientation can be 

induced by substrate alignment [26], [28]–[30], [33], [42], [115], [234], [235].  Since cell 

alignment would induce aligned ECM deposition [119], [236], [237], by reproducing and 

controlling the alignment of both cells and scaffold organization, a more physiological 

representation of human tissues could be achieved.  

5.4 Core-shell fiber  

For tissue engineering applications, besides cells and scaffolds, it is desirable to 

encapsulate bioactive molecules such as growth factors to stimulate critical phenomena in 

tissue development [103]. Cell attachment, motility, proliferation, aggregation and gene 

expression, are all influenced by those soluble signaling proteins of varied growth factors.  

These bioactive molecules should be delivered in a controlled and sustained manner 

without loss of its bioactivity.  

As previous studies have provided the basis for design and optimization of coaxial 

electrospinning process to control the nanostructure of core-shell composite nanofibers, 

coupled with morphological mimicking of the nanofiber scaffolds to the target tissue 

structure, we can provide both morphological and biochemical clues for the regenerating 

tissue [62], [103], [238].  

The core-shell fibers obtained in this study have well defined core-shell structure with 

darker core and lighter shell in bright field TEM (Figure 4.10 a and b). The thickness of 

the core and shell are uniform along the fiber, the successful removal of the core material 

further proved the distinct boundary between the core and shell indicated no back mixing 

between the two materials (Figure 4.10 c and d). The versatility of coaxial 

electrospinning provides an alternative and simple means to encapsulate drugs. Two 
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components can be coaxially and simultaneously electrospun through coaxial needle. 

Further crosslinking of the core-shell fiber can be used to modify and determine the 

mechanism and rate of drugs or bioactive molecule release. Depends on the degree of 

crosslinking and permeability of the chemicals through shell material, drug molecules can 

diffuse through the shell or can be held over a period of time until release when the shell 

material starts to degrade or in a combination of the two mechanisms. The use of core-

shell structured nanofibers for encapsulating bioactive molecules and conducting 

controlled release has yet to be explored.  

5.5 Collagen fiber stabilization and aqueous stability 

The use of collagen as a biomaterial for tissue engineering has many advantages, 

including being abundant and biocompatible [136]. Electrospinning has been widely used 

to fabricate collagen fibers to closely mimic the fibrous structure of the natural 

extracellular matrix [13], [239]. However, recent studies have shown that collagen does 

not retain its native structure and undergoes some conformation changes during 

electrospinning [136]. As shown in Figure 4.11 b, the solubility of collagen is drastically 

changed after electrospinning, the water-insoluble freeze dried collagen becomes water 

soluble. This change in solubility post electrospinning has been attributed to the 

conformation change of collagen [7], [136]. 

As one of the most important criteria for tissue engineering scaffold is its  controlled 

aqueous stability in cell culture media, it is necessary to introduce crosslinks into the 

molecular structure of collagen to control its degradation rate and enhance its mechanical 

stability [25]. Hence, crosslinking has been used to stabilize the electrospun collagen 

mats for widening the possibility of using it in tissue regeneration and biomedical 

applications. The most commonly used crosslinking methods include chemical 

crosslinking using reagents such as aldehydes, carbodiimides, and plant extracts, physical 

crosslinking using dehydrothermal and UV irradiation and biological methods such as 

transglutaminase [25].  

The use of glutaraldehyde for crosslinking of collagen has been studied extensively [3], 

[6], [16], [144], [174]. The reactions involved during glutaraldehyde crosslinking is very 
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complex and many reaction can occur during crosslinking. These crosslinking reactions 

introduce cytotoxic aldehyde groups into the scaffold and remain non-specifically bound 

to the collagen even after exhaustive rinsing [10], [14], [144], [151].  As a result, 

glutaraldehyde is considered to be cytotoxic as a crosslinking reagent [3], [7], [10], [25], 

[89], [129], [151], [153], [160].  

Our group has been working with genipin, a plant extract, for electrospun collagen 

crosslinking extensively due to its comparatively low cytotoxicity [45], [89], [129], 

[131], [136], [158]. Our previous work on genipin crosslinked electrospun collagen fibers 

indicate genipin crosslinking would enhance fiber stability in aqueous media but with 

increase in average fiber diameter due to swelling [89], [129].  

Another approach to crosslink collagen is via UV irradiation. Riboflavin is widely used in 

ophthalmic applications to enhance stroma strength through UV irradiation, while the 

combination of Rose Bengal and visible light for collagen crosslinking has been 

established for keratoconus and other ectatic disorders treatments [159], [160], [162], 

[240]. Since both treatments are accomplished by strengthening the collagen presented in 

cornea, these methods were later adapted to stabilize collagen based materials [7], [159], 

[160], [163], [240]. In the current study, riboflavin with UV irradiation and Rose Bengal 

with green light exposure were used to photochemically crosslink electrospun collagen 

fibers. Figure 4.12 illustrate the fiber morphology and size before and after riboflavin 

loading (Figure 4.12 a and b), after UV illumination (Figure 4.12 c) and post water test 

(Figure 4.12 d – f).  Although fibers are more stable than as spun fibers, one hour 

aqueous stability test shows flat porous structure indicating collagen is partially dissolved 

and degraded within the test duration. On the other hand, Figure 4.13 a and b show SEM 

images of free standing fibers obtained for as spun Rose Bengal incorporated fibers, 

Figure 4.13 c – i show SEM images of fibers crosslinked in two different solvent systems 

(pure ethanol and pure isopropanol) for 22 hours followed by 24 hours of water test.  By 

using these two solvent systems, collagen fibers maintain their fibrous structure while the 

rate and degree of dissolution and degradation are different.  Fibers crosslinked in ethanol 

have porous structure (Figure 4.13 d and e) while fibers crosslinked in isopropanol have 

rough surface after water test. The size difference in average fiber diameter after water 
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uptake and the duration of fiber swelling suggested that the extent of crosslinking varies 

in each sample. If the degree of crosslinking is not sufficient to resist swelling, fibers will 

disintegrate and dissolve after prolonged water exposure.  

Both chemical and photochemical crosslinking approaches result in stabilization with 

fairly significant fiber swelling and alteration of fiber morphology (Figure 4.12, Figure 

4.13 and Figure 4.14). Moreover, these chemical approaches also has the potential of 

introducing cytotoxicity into the crosslinked fiber. Alternative methods that can control 

post stabilization swelling of the fibers and at the same time eliminate the introduction of 

potential cytotoxicity with the use of crosslinking chemical reagents would be highly 

desirable. An approach that may allow us to achieve this is via ion implantation. 

Our group is one of the first to use ion implantation to modify and impart aqueous 

stability to polymer materials [58], [79], [195]. Although previous work use ion 

implantation as a secondary modification method for surface modification and material 

stability [58], [79], [195], our most recent work on ion implanted electrospun collagen 

fibers shows that ion implantation not only successfully crosslinked fibers, it also resulted 

least fiber swelling over 7 days [75]. In our current work, ion implantation was carried 

out according to a previously established procedure [75] and as shown in Figure 4.16, 

fibers fabricated with the same source collagen and ion implantation procedure, fiber 

stability is comparable to previous work. After immersed in water for 7 days, fibers show 

no sign of swelling. The reduction in fiber diameter can be attributed to fiber degradation 

over the test period. Among all the crosslinking methods used in this work, ion 

implantation resulted in very effective stabilization with no sign of swelling and no 

alternation of fiber morphology.   

Our results indicate that each crosslinking method has demonstrated a different degree of 

structural stability, largely attributed to the different crosslinking mechanisms and degree 

of crosslinking. By only looking at fiber size changes, it seems ion implantation is the 

most effective in collagen crosslinking. However, as the fiber degradation / disintegration 

rate should match that of the ECM deposition rate by the cells populated on the scaffold, 

the degree of crosslinking or degree of stability of the fibers should be tailored 
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accordingly to match that of the ECM deposition rate. Thus, the choice of ideal 

crosslinking method should not only depend on degree of crosslinking, degree of fiber 

swelling and degradation, but also depend on other aspects such as the rate of degradation 

relative to tissue regeneration rate, functional groups on the surface of the fibers, cell 

compatibility and mechanical properties of the scaffolds.  

The availability and variability in fiber crosslinking methods, resultant fiber morphology, 

size and stability provide flexibility in choosing crosslinking methods for target 

applications. For example, the difference in resultant fiber morphology (smooth, rough 

and porous) with each crosslinking method allows further tuning on fiber structure and 

scaffold surface area to volume ratio. The rough surface and porous fibers obtained with 

green light crosslinking can provide high surface area for cell adhesion and drug loading 

for tissue engineering and biomedical applications.  

It should be also noted that fiber swelling were only tested in water in the current study. 

The degree of fiber swelling and fiber degradation could be much different when samples 

are placed in cell media such as DMEM and RPMI. The presence of salts in the cell 

media will change fiber solution interaction, result in different dissolution and 

degradation rate of the collagen protein. As shown in previous work [75], during aqueous 

stability test, ion implanted fibers showed higher fiber swelling in DMEM than in water. 

The difference in fiber swelling can be attributed to the differences in solution 

composition, where the ionic species present in the cell culture media can interact with 

the collagen molecules to promote water ingression into the fiber that lead to faster 

dissolution and degradation. In this work, water exposure is used to establish the 

feasibility of different crosslinking methods in imparting collagen crosslinking and fiber 

stability. 

5.5.1 Change of chemical structure of ion implantation (XPS)  

The successfulness of a tissue engineering scaffold largely depends on the favorable 

material-tissue interaction [2], [3]. Thus, the surface chemistry of biomaterials plays a 

significant role in determining the outcome of the tissue-scaffold interactions. With the 
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appropriate modification, a material’s surface can be tailored to improve 

biocompatibility, adhesion and cell interactions [54]–[56], [58], [59].  

As mentioned in the previous section, the benefit of ion implantation over other 

crosslinking methods includes minimum cytotoxicity with no additional chemical 

crosslinking agents added so that the chemical structure of the ion implanted samples 

should closely resemble that of the native material. During ion implantation process, the 

ions have energies high enough to break the chemical bonds while allowing new bonds 

forming. This bond breaking and reforming process leads to the crosslinking / 

stabilization of the structure. With the removal of chemical bonds and the formation of 

new bonds, chemical changes could have taken place. As nitrogen ion is an active ion 

species, it serves two different roles in the ion implantation process, it transfers kinetic 

energy to the bonds to break them allowing new bonds formation for crosslinks, and it 

can introduce itself into the structure during the process. 

Our previous work showed N+ implantation introduce nitrogen contain functional groups 

into polyvinyl alcohol (PVA) fibers, and the following cell compatibility study showed 

the small amount of nitrogen introduction drastically improved cell adhesion / 

compatibility [79]. This suggests the amount of nitrogen present in the material 

determines the cell adhesion/compatibility. However, our previous work on N+ implanted 

electrospun collagen fibers indicated that implantation resulted in decrease in nitrogen 

content [75]. This is because PVA has no nitrogen present in its chemical structure, the 

use of N+ resulted in the introduction of nitrogen contain groups. While collagen already 

have nitrogen contain groups such as amine and amide, the ion interaction can result in 

both nitrogen bond formation and removal. Due to the high energy of the nitrogen ions, 

most ions would penetrate through the samples and the bond removal is more favorable 

compare to the formation. Hence, nitrogen content would decrease with ion implantation. 

As the difference in nitrogen contents and the amount of amide in the ion implanted 

fibers can have important implications when being considered for tissue engineering 

applications, our goal is to look at the nitrogen content change, minimize the nitrogen 

loss and maintain the amine / amide groups for cell adhesion. 
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In order to understand the chemical and structural changes taking place in the ion 

implantation process, XPS was employed to assess the element fraction of nitrogen 

calculated using an assumption of depth homogeneity [241].  

From the survey spectra in Figure 4.17– Figure 4.21, all samples have very similar 

elemental compositions (N, O, C), indicating all samples are mainly composed of protein. 

The bulk protein samples provide a reference for protein composition, although different 

treatment (e.g. electrospinning and ion implantation) may change the relative 

composition. The nitrogen content in native collagen is determined to be 11.6% (Figure 

4.17), after ion implantation, the collagen film nitrogen content dropped to 9.6% (Figure 

4.18). By dissolving the collagen in acetic acid and electrospun into fibers, the nitrogen 

content increased to 17.6% (Figure 4.19). The increase in nitrogen content can be 

attributed to dissolution process and high energy input from electrospinning, resulting in 

the unfolding of collagen structure, exposing more nitrogen containing groups.  

With 4 x 1015 ions/cm2 N+ implantation, the nitrogen content on the electrospun collagen 

reduced to 11.2% (Figure 4.20), which is very similar to native collagen (Figure 4.17). A 

higher dosage implantation resulted in further reduction in nitrogen content (Figure 4.21). 

As summarized in Table 4.3, within all the samples, as spun fibers have the highest 

nitrogen content and high dosage (8 x 1015 ions/cm2) implanted electrospun collagen 

fibers have the lowest nitrogen content. 

The reduction of nitrogen content for all implanted sample can be attributed to the change 

of chemical structure by ion implantation, the high energy ions favor nitrogen groups 

removal than bonds formation. The higher ion dosage resulted more nitrogen bonds 

removal and higher nitrogen content loss.  

We also looked at the change of chemical structure by focusing on the nitrogen peaks 

using high resolution XPS scans. Since peptide bonds (amide) are known to be essential 

for cell adhesion on substrates, one of our goals would be to maximize the amide contents 

on the crosslinked fibers. The high resolution XPS N1s scans are shown in Figure 4.22-

Figure 4.26. Both the freeze-dried type I collagen and as-spun collagen fibers have one 

main peak at 400 eV representing amine/amide group (Figure 4.22 and Figure 4.24). 
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Comparing to the nitrogen implanted samples, low dosage ion implanted fibers 

maintained the main amine/amide peak with no additional peaks indicating minimum 

structural change (Figure 4.25). Ion implanted film and high dosage implanted fibers 

showed additional imide peak (Figure 4.23 and Figure 4.26), indicating the possible 

chemical changes introduced by implantation. Both C 1s (Figure 4.27 to Figure 4.31) and 

O 1s (Figure 4.32 to Figure 4.36) are used to confirm the samples have chemical 

structures representing functional groups in protein. The elemental analysis and high 

resolution XPS spectra suggest low dosage ion implantation resulted close resemblance 

of chemical structure between implanted fibers and freeze-dried collagen. However, 

when choosing a scaffold for specific tissue engineering application, other aspects such 

as degradability, morphology and mechanical properties should also be taking into 

consideration.  

5.6 Mechanical properties  

For many applications in the biomedical areas including tissue regeneration, three 

dimensional (3D) nanofibrous scaffold with controlled fiber orientation simulates the 

extracellular matrix (ECM) environment [42], [79], [242]. Cells which are in direct 

contact with the scaffold can sense and respond to the stimulation from the surrounding 

including mechanical stimuli [18], [18], [30], [35].  Hence, the scaffold should not only 

have optimal fiber diameters that mimic the structure but also have mechanical properties 

of the native ECM [50], [78], [154], [204], [226], [243], [244]. Since the overall property 

of the scaffold is determined by the organization and property of the individual fiber, and 

the cells are sensing individual fiber properties at the microscopic level, it is important to 

determine the mechanical property of single fibers that constitute the 3D scaffold 

[245][246][152], [159], [169], [172]. As the fibers produced in this work is in the 

submicron range, conventional method cannot be used to measure fiber properties and 

nanofiber properties can be significantly different from their macroscopic counterparts as 

the fiber size is reduced to the nanoscale[79], [149], [172], [180], [191], [193], [196], 

[199].  

During AFM measurements, each fiber was treated as an individually isolated sample and 

measured independently, thus there is no standard deviation on the modulus 
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measurements [74], [190], [200], [219], [247]–[249] Although the as spun collagen fibers 

have comparatively high Young’s modulus (Figure 4.38), by adding photoinitiators into 

the fiber, the fiber modulus reduced by a factor of 10 (Figure 4.40). Similar effects due to 

inclusion of other components resulted in reduced overall composite stiffness was 

observed in other studies and were attributed to the difference in loading and aspect ratios 

of reinforced components[185], [196], [209], [250]. After visible light crosslinking, fiber 

size drastically reduced due to the depletion of the photoinitiators, while the overall 

mechanical properties remained similar to those prior to crosslinking (Figure 4.41). On 

the other hand, genipin crosslinking resulted in fiber swelling while the overall Young’s 

modulus of the fibers remained similar to the as spun fiber (Figure 4.42).  

It was suggested that the mechanical properties of electrospun collagen nanofibers can be 

adjusted by controlling the crosslinking parameters. For genipin crosslinking and visible 

light crosslinking, concentration of the crosslinker and reaction / irritation time and 

energy of the LED would affect the overall degree of crosslinking. Similarly, for ion 

implantation, it was expected the change of ion dosage and ion current would affect the 

degree of crosslinking, thus the mechanical properties of the fibers. However, as seen for 

ion implanted electrospun nanofibers, no significant difference was observed on 

mechanical properties between two ion dosages (Figure 4.43). This result contradicts 

with previous work ion implanted electrospun PVA fibers where increase in nitrogen ion 

dosage increased PVA fiber average elasticity [79]. However, taking the average of the 

fiber elasticity can be misleading as we observed size dependence on fiber properties. 

Depends on the number of fibers taken in the ranges of fiber size, the average fiber 

elasticity can be skewed towards smaller fibers with higher elasticities. The overlapping 

of the sets of data provides a more direct comparison between the samples and showed 

the consistency and matching of fiber elasticities with various treatments.  

Although acetic acid was suggested as an alternative to HFIP with less collagen 

denaturation, no mechanical property variation was observed in the Young’s modulus of 

fibers spun with acetic acid of HFIP (Figure 4.44).  This could be attributed to the 

vigorous electrospinning process where most of the solvent should be evaporated by the 
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time fibers reach to the collector, small or no solvent residue was left in the fibers. The 

fiber structure and properties remain similar regardless of the type of solvent being used.  

Table 5.1. Summary comparison of collagen Young’s moduli  

Papers  
Collagen fibers  Conditions  Range of 

diameters (nm)  

Moduli 

Yang et al. [87] 

Electrospun type I 

collagen Non 

crosslinked 

dry  179-356 1.4-7.5 Gpa 

Yang et al. [87] 

Electrospun type I 

collagen 

Glutaldehyde 

crosslinked  

dry  191-450 1.3-7.8 GPa  

Yang et al. [87] 

Electrospun type I 

collagen 

Glutaldehyde 

crosslinked  

PBS 

buffer 
210-425 0.07-0.26 GPa 

Carlisle et al. 

[149]  

Elctrospun type I 

collagen 
dry  180-800 0.1-10 Gpa 

Yang et al. 

[192] 

Native type I bovine 

Achilles tendon 
dry  200-300 1.0-3.9 GPa  

Yang et al. 

[192] 

Native type I bovine 

Achilles tendon 

PBS 

buffer 
200-300 0.07-0.17 GPa 

Graham et al. 

[229] 

In vitro assembled 

type I collagen fibril 

from human 

fibroblasts 

dry  10-30 32 mPa 

Eppell et al. 

[246] 

Single type I 

collagen fibrils from 

sea cucumber 

hydrated 10-500 550 mPa 

This work 
Electrospun type I 

collagen as spun 
dry  60 - 280 

2.33-51.68 

GPa 

This work 

Electrospun type I 

collagen genipin 

crosslinked  

dry 71-667 
0.01-61.98 

GPa 

This work 

Electrospun type I 

collagen + Rose 

Bengal 

dry 227-642 
0.07-15.62 

GPa 

This work 

Electrospun type I 

collagen 520nm 

crosslinked  

dry  110-270 0.93 – 36 GPa 

 

Electrospun type I 

collagen ion 

implantation  

dry 72- 680 0.1 – 174 GPa 
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The young’s moduli of collagen from literature are summarized in Table 5.1. Yang et al. 

performed AFM bending tests on electrospun collagen fibers to obtain bending and shear 

moduli c. The Young’s modulus was found to be between 1.4 and 7.5 GPa. These values 

are significantly lower than the moduli obtained from the as spun fibers in the current 

study. This could be attributed to a different collagen source (type I collagen from calf 

skin) of the fibers. Another study performed on collagen fibrils from bovine Achilles 

tendon measured a Young’s moduli of 1.0 to 3.9 GPa with fiber diameters of 187-305 

nm[192]. In both works, it was observed that the bending modulus increased as the fiber 

diameter decreased. A similar trend was observed by other groups on single electrospun 

collagen type I fiber, where a modulus between 0.1 and 10 GPa was measured [149]. 

Graham et al. stretched in vitro assembled type I collagen fiber obtained from human 

fibroblasts using the AFM and obtained a Young’s modulus of 32 MPa [229]. Feijen’s 

group carried out several studies on the mechanical properties of native collagen fibers 

and found a modulus of about 1-7 GPa [87], [251]. Compared to previously published 

studies [87], [149], [192], the electrospun type I collagen fibers obtained in this study 

have mechanical properties similar to native collagen fibers. For each set of data, there 

also seem to be a size dependence on mechanical properties.  

Yang et al. performed mechanical testing on electrospun collagen fibers and native 

collagen fibrils in both dry and wet conditions [87], [192]. The Young’s modulus 

obtained in PBS is ten times smaller than the ones in dry condition. The difference of 

Young’s modulus in dry and wet condition indicates the crosslinked fibers may resemble 

different mechanical characteristics in physiological relevant conditions such as PBS. As 

previous section indicated fiber morphology and sizes change in aqueous condition, the 

mechanical properties can be quite different among the crosslinking treatments.  

The variation of fiber mechanical properties among different crosslinking treatments 

suggest that we can chose and adjust our crosslinking system to obtain fiber properties in 

a wide range to accommodate different mechanical needs and provide cells with various 

degree of mechanical stimuli.  
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5.7 Cell compatibility 

The purpose of a tissue engineering scaffold is to replace and repair damaged tissues, the 

scaffold-cell interaction determines the effectiveness of the scaffold. To evaluate the 

performance of the scaffold, it is important to determine the cell-scaffold interaction in 

vitro. Cell compatibility tests were performed on crosslinked electrospun fibers.  

Human fetal lung (IMR-90) cell line were seeded on crosslinked electrospun collagen 

fibers for up to 7 days. As shown in Figure 4.46, cells show good adhesion and spread out 

in all directions on chemical and photochemical crosslinked and ion implanted samples. 

The highly involvement and entanglement of filopodia with fibers (Figure 4.47) 

indicating the role of filopodia in topography sensing thus directing cell migration and 

enable cell orientation [252]. As indicated in Figure 4.46 and Figure 4.48 b, the majority 

of cells showed typical spindle-shaped with abundant filopodia formation [253]. The 

observed filopodia were extended towards all directions on the surface of the samples 

(Figure 4.47 and Figure 4.48 a), implying that these cells were actively exploring the 

surrounding surfaces before migrating [252]. Partridge and Marcantonio verified that 

filopodia containing both integrin and actin formed the initial cell-matrix contacts and 

further generated mature focal adhesions [254].  

By observing the surface area coverage with cells in Figure 4.49, photochemical 

crosslinked resulted in highest surface area coverage. By day 7, the surface coverage 

reaches 70 – 80% confluence, which is similar to cell propagated on cell culture plates. 

Genipin crosslinking resulted in the lowest surface area coverage. The low cell coverage 

combined with our previous work on hydrogel/ fiber composite on neural stem cell fate 

suggests that although genipin is considered to have much reduced cytotoxicity compare 

to glutaraldehyde, it my still impair biocompatibility of the crosslinked scaffold [158].  

 Although ion implantation resulted moderate surface area coverage compared to Rose 

Bengal incorporated photochemical crosslinking, physical crosslinking best preserved 

fiber morphology with least change in fiber size over seven days cell growth. The ion 

implanted fibers are the most stable with least swelling among all samples. Along with 

the XPS results indicating the lower carbonization level with lower dosage implantation, 
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low dosage N+ implantation should be the most desirable based on its stability and 

biocompatibility.  

To mimic the three-dimensional (3D) environment of natural tissues, aligned electrospun 

collagen fibers were prepared and crosslinked with ion implantation. These fibers were 

approximately 120 nm in diameter and comprised the aligned topographical features on 

the scaffold surface. After IMR-90 seeded on the fibers for 1 day, the cells are deformed 

to align along the fiber direction (Figure 5.2).  

 

Figure 5.2 IMR 90 seeded on N+ implanted aligned fibers for 24 hours.   

Similar results have been demonstrated by several other studies. Works have been done 

to investigate the influences of feature alignment on cell alignment, Lowe et al. found 

that dermal fibroblasts aligned and extended in the direction of the larger, aligned 

scaffold features [122], Yang et al. seeded stem cells onto oriented nano- and microfibers 

of PLLA and found that the direction of cellular elongation and neurite outgrowth was 

parallel to the direction of PLLA fibers [255]. Schnell et al. found that collagen 

containing PCL fibers provided an excellent scaffold for Schwann cell migration and 

growth while the cells approximately obeyed the directionality of the underlying 
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nanofibers [235]. Combined with our current result where IMR90 elongated along the 

fiber alignment direction, it is reasonable to believe the topographical cues presented by 

aligned fibers were sufficient to orientated contacted cells.  The aligned cells would 

induce aligned extracellular matrix deposition, which is critical for generating functional 

tissues.    
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6 Conclusion 

Since many tissues possess highly organized structure, it is necessary to have the 

structure of the tissue engineering scaffold to closely resemble that of the tissue it is 

replacing. An example is the tympanic membrane or ear drum, the fibrous structure of the 

ECM consists of collagen fibers arranged in organized orientations. In this work, we 

aimed at developing scaffold consisting electrospun collagen fibers that mimic the 

chemical, structural, organization and mechanical aspects of the native ECM. The 

electrospun fibers were successfully produced in both random and organized orientation 

by electrospinning and various parameters were adjusted to tune the fiber morphology 

and diameters. As electrospun collagen fibers are unstable in aqueous environment, 

chemical, photochemical crosslinking and ion implantation were performed to impart 

aqueous stability into the collagen fibers. Our aqueous stability tests demonstrated 

improved fiber stability in water and it is possible to obtain fibers with different structure 

and morphologies to increase scaffold surface area for cell adhesion and drug loading.  

Not only the nanofibers have unique mechanical properties from its bulk counterparts at 

the submicron scale, but also the mechanical properties of individual fibers can be 

adjusted by different crosslinking methods.  In vitro cell compatibility assessment 

indicated good adhesion and spreading of the IMR 90 fibroblasts. Rose Bengal and green 

light crosslinked samples resulted highest surface coverage of the cells while aligned 

fibers treated with N+ beam induced the cell morphology deformation and cell alignment 

along the fiber.  

The results in this study demonstrate that it is possible to control fiber size, morphology, 

structure, stability, degradation and mechanical properties through the versatile 

electrospinning and crosslinking process. By adjusting electrospinning parameters and 

crosslinking conditions, scaffolds with tunable structures and properties can serve as a 

great candidate for next generation of implantable medical device and tissue engineering 

scaffolds.  
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7 Future work 

A successful tissue engineering scaffold should be able to fill the tissue void, provide 

structural support and to deliver appropriate bioactive signals to direct and promote cells 

to form tissues within the body upon implantation.  

Our work has demonstrated the ability to create scaffold that can mimic native tissue 

environment in terms of structural, morphological, chemical and mechanical aspects, 

carry and encapsulate molecules for delivery applications and good cell adhesion 

properties. 

Collagen scaffold is biodegradable and it serves as a temporary templates for cell 

seeding, proliferation and growth prior to the regeneration of nature ECM, thus, the 

scaffold degradation rate should match the ECM deposition rate of the target tissue. In 

the future, the fiber stability tests should be conducted in physiological conditions such as 

PBS, cell culture media in addition to water. And it is also necessary to perform 

degradation test to determine and tune the degradation rate of the scaffold to match that 

of the target tissue regeneration rate.  

To demonstrate bioactive molecule encapsulation and control delivery, growth factors 

should be encapsulated and a controlled release study should be carried out to determine 

the release rate of the bioactive molecules. By determining the release mechanism and 

kinetics, crosslinking condition can be adjusted accordingly to delivery appropriate 

cellular signals efficiently.   

Although our work indicated good cell adhesion, this study is very preliminary in terms 

of determine cell compatibility. More detailed cell compatibility studies are necessary to 

ascertain our current results.  

In our current work, fiber mechanical properties were determined under ambient 

conditions in air. For tissue engineering applications, scaffolds will be used in a 

physiological relevant environment consists of an aqueous fluid, cell behavior will be 

depending on the fibers’ “wet” mechanical properties. For both in vivo and in vitro 
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studies, it is necessary to determine mechanical properties of these scaffolds in fluid such 

as PBS or cell culture media.  
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Appendices  

Appendix A Rat tail collagen preparation procedure  

1. Put frozen rat tails in 70% ethanol to thaw for about an hour 

2. With a scalpel, cur the tip of the tail to expose the white collagen fibers, using 

forceps pull the fibers from the tail and place them in a plastic petri dish 

3. Continue cutting the tail in small increments and pulling out the fibers 

4. Clean the fibers free of contaminating tissue and place them in another clean 

container 

5. Collagen fibers can be stored at -20 ºC or proceed to collagen solution 

6. Weigh out about4g/L collagen fibers (equaivalent to about 5 tails) and soak in 200 

mL 70 % ethanol for 30 mins (leave forcepts inside the beaker as well). 

7. Prepare acetic acid solution (1mL of concentrated acetic acid and 1L of dH2O) 

and filter sterilize with bottle top filter 

8. Add 900 ml of the bottle filtered solution to collagen fibers in an autoclaved flask 

with a stir bar and dissolve the collagen at 4 ºC for 7 days 

9. Centrifuge the solution at 11,000 RPM ( 10 000 xg) overnight at 4 ºC. 

10. Collect the supernatant into a sterile bottle and store at 4 ºC 

11. Lyopholize the solution to obtain dry collagen powder 
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Appendix B Deflection due to tension  

The force vs. fiber deflection curves obtained near the center of the suspended fibers 

were also fitted using models developed by Hudson et al. [191]. This model allows the 

possibility of including a pre-existing tension due to the fiber deposition process. Fits to 

the entire range of data can only be performed for fibers that experience only elastic 

deformation where the yield point was not reached. The Young’s modulus was obtained 

using the model of Hudson et al. to fit force vs. displacement data with initial tension and 

Young’s modulus as free parameters. A few points near the center of fiber were used for 

analysis as the model was developed only for loads applied at the center of the fiber.  

For some of the data points with small fiber diameter and higher modulus, individual 

force curves are non-linear (Figure A). This nonlinearity is not predicted by the pure 

bending model. The pure bending model assumes that the lengths of the fibers do not 

change during the measurements. This may not be a good approximation for small 

diameter fibers, which may significantly deform during measurements. The model of 

Hudson et al. was used to consider the possibility of pre-existing tension in the fibers, 

which might be expected from electrospinning and deposition process. From Figure A, it 

is seen that the model of Hudson et al. (b) fits the data for force as a function of fiber 

deflection much better than the Heidlberg model with no initial force (a). This is only the 

case for a few fibers, for most fibers, the deflection is small and the nonlinearity in force 

vs. deflection curves was not observed. For the fiber shows in Figure A, the Young’s 

modulus of the fiber was determined to be 118 ± 7.23 MPa using the pure bending model 

and reduced to 42.7MPa±8.12MPa using Hudson model. The difference indicates the 

importance of pre-tension in fiber stiffness calculation for small fibers. 

Since the difference of Young’s modulus obtained with pure bending model were only 

observed in fibers with small diameters (e.g. 100-150 nm for as spun fibers, 250-300 nm 

for photoinitiator incorporated fibers and 50-100nm for genipin crosslinked fibers), this 

difference can be attributed to the possibility of pre-existing tension in the fibers, which 

might be expected due to the nature of the electrospinning and fiber deposition process.   
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Figure A. Force as a function of fiber deflection for a fiber deformed within its 

elastic range. (a) The solid curve illustrates the model of Hudson et al. without pre-

tension incorporated into fitting parameters. (b) the solid curve illustrates the model 

of Hudson et al. with pre-tension incorporated. 
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Appendix C green light light distance and intensity chart     
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Appendix D Rose Bengal UV-Vis spectra in different solvent system 

 

 

 

Solvent Peak  FWHM 

Water 548nm 520-565nm 

Ethanol 559nm 539-572nm 

Isopropanol 562nm 543-575nm 
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